Skip to main content
Log in

Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

We examined the impact of permafrost on dissolved organic matter (DOM) composition in Caribou-Poker Creeks Research Watershed (CPCRW), a watershed underlain with discontinuous permafrost, in interior Alaska. We analyzed long term data from watersheds underlain with varying degrees of permafrost, sampled springs and thermokarsts, used fluorescence spectroscopy, and measured the bioavailabity of dissolved organic carbon (DOC). Permafrost driven patterns in hydrology and vegetation influenced DOM patterns in streams, with the stream draining the high permafrost watershed having higher DOC and dissolved organic nitrogen (DON) concentrations, higher DOC:DON and greater specific ultraviolet absorbance (SUVA) than the streams draining the low and medium permafrost watersheds. Streams, springs and thermokarsts exhibited a wide range of DOC and DON concentrations (1.5–37.5 mgC/L and 0.14–1.26 mgN/L, respectively), DOC:DON (7.1–42.8) and SUVA (1.5–4.7 L mgC−1 m−1). All sites had a high proportion of humic components, a low proportion of protein components, and a low fluorescence index value (1.3–1.4), generally consistent with terrestrially derived DOM. Principal component analysis revealed distinct groups in our fluorescence data determined by diagenetic processing and DOM source. The proportion of bioavailable DOC ranged from 2 to 35%, with the proportion of tyrosine- and tryptophan-like fluorophores in the DOM being a major predictor of DOC loss (p < 0.05, R 2 = 0.99). Our results indicate that the degradation of permafrost in CPCRW will result in a decrease in DOC and DON concentrations, a decline in DOC:DON, and a reduction in SUVA, possibly accompanied by a change in the proportion of bioavailable DOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amon RMW, Fitznar H, Benner R (2001) Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol Oceanogr 46:287–297

    Google Scholar 

  • Baker A, Spencer RGM (2004) Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci Total Environ 333:217–232. doi:10.1016/j.scitotenv.2004.04.013

    Article  Google Scholar 

  • Baker M, Valett M, Dahm C (2000) Organic carbon supply and metabolism in a shallow groundwater ecosystem. Ecology 81:3133–3148

    Google Scholar 

  • Battin TJ (1998) Dissolved organic materials and its optical properties in a blackwater tributary of the upper Orinoco River, Venezuela. Org Geochem 28:561–569. doi:10.1016/S0146-6380(98)00028-X

    Article  Google Scholar 

  • Battin TJ, Wille A, Psenner R, Richter A (2004) Large-scale environmental controls on microbial biofilms in high-alpine streams. Biogeosciences 1:159–171

    Google Scholar 

  • Berg B, Meentemeyer V (2002) Litter quality in a northern European transect versus carbon storage potential. Plant Soil 242:83–92. doi:10.1023/A:1019637807021

    Article  Google Scholar 

  • Bolton WR, Hinzman L, Yoshikawa K (2004) Water balance dynamics of three small catchments in a Sub-Arctic boreal forest. Northern Research Basins Water Balance In: Proceedings of a workshop held at Victoria Canada 2004, IAHS published 290

  • Boyer EW, Hornberger GM, Bencala KE, Mcknight DM (1996) Overview of a simple model describing variation of dissolved organic carbon in an upland catchment. Ecol Modell 86:183–188. doi:10.1016/0304-3800(95)00049-6

    Article  Google Scholar 

  • Boyer EW, Hornberger GM, Bencala KE, Mcknight DM (1997) Response characteristics of DOC flushing in an alpine catchment. Hydrol Process 11:1635–1647. doi:10.1002/(SICI)1099-1085(19971015)11:12≤1635::AID-HYP494≥3.0.CO;2-H

    Article  Google Scholar 

  • Buffman I, Galloway JN, Blum LK, McGlathery KJ (2001) A stormflow/baseflow comparison of dissolved organic matter and bioavailability in an Appalachian stream. Biogeochemistry 53:269–306. doi:10.1023/A:1010643432253

    Article  Google Scholar 

  • Cai Y, Guo L, Douglas TA (2008) Temporal variation in organic carbon species and fluxes from the Chena River, Alaska. Limnol Oceanogr 53:1408–1419

    Google Scholar 

  • Cammack WK, Kalff J, Prairie YT, Smith EM (2004) Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism. Limnol Oceanogr 49:2034–2045

    Google Scholar 

  • Carey SK (2003) Dissolved organic carbon fluxes in a discontinuous permafrost subarctic alpine catchment. Permafrost Periglac Process 14:161–171. doi:10.1002/ppp.444

    Article  Google Scholar 

  • Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51:325–346. doi:10.1016/0304-4203(95)00062-3

    Article  Google Scholar 

  • Coble PG, Del Castillo CE, Bernard A (1998) Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Res Part II Top Stud Oceanogr 45:2195–2223. doi:10.1016/S0967-0645(98)00068-X

    Article  Google Scholar 

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149. doi:10.1021/es0506962

    Article  Google Scholar 

  • Dornblaser MM, Striegl RG (2007) Nutrient (N, P) loads and yields at multiple scales and subbasin types in the Yukon river basin, Alaska. J Geophys Res 112:G04S57. doi:10.1029/2006JG000366

    Article  Google Scholar 

  • Findlay S, Strayer D, Goumbala C, Gould K (1993) Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnol Oceanogr 38:1493–1499

    Google Scholar 

  • Guo L, Ping C, Macdonald RW (2007) Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophys Res Lett 34:L13603. doi:10.1029/2007GL030689

    Article  Google Scholar 

  • Haugen RK, Slaughter CW, Howe KE, Dingman SL (1982) Hydrology and climatology of the Caribou-Poker Creeks Research Watershed, Alaska. U.S. Army Corp of Engineers, Cold Regions Research and Engineering Laboratory report 82-26

  • Hinton MJ, Schiff SL, English MC (1998) Sources and flowpaths of dissolved organic carbon during storms in two forested watersheds of the Precambrian Shield. Biogeochemistry 41:175–197. doi:10.1023/A:1005903428956

    Article  Google Scholar 

  • Hinzman LD, Fakuda M, Sandberg DV, Chapin FSIII, Dash D (2003) FROSTFIRE: an experimental approach to predicting the climate feedbacks from the changing boreal fire regime. J Geophys Res 108:8153. doi:10.1029/2001JD000415

    Article  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith G, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Nolan M, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker J, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim Change 72:251–298. doi:10.1007/s10584-005-5352-2

    Article  Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Change Biol 6:196–210. doi:10.1046/j.1365-2486.2000.06021.x

    Article  Google Scholar 

  • Hood E, Williams MW, Mcknight DM (2005) Sources of dissolved organic matter in a rocky mountain stream using chemical fractionation and stable isotopes. Biogeochemistry 74:231–255. doi:10.1007/s10533-004-4322-5

    Article  Google Scholar 

  • Hood E, Gooseff MN, Johnson SL (2006) Changes in the character of stream water dissolved organic carbon during flushing in three small watersheds, Oregon. J Geophys Res 111:1–8. doi:10.1029/2005JG000082

    Article  Google Scholar 

  • Jaffé R, Boyer JN, Lu X, Maie N, Yang C, Scully NM, Mock S (2004) Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Mar Chem 84:195–210. doi:10.1016/j.marchem.2003.08.001

    Article  Google Scholar 

  • Jones JB, Fisher SG, Grimm NB (1996) A long-term perspective of dissolved organic carbon transport in Sycamore Creek, Arizona, USA. Hydrobiologia 317:183–188. doi:10.1007/BF00036468

    Article  Google Scholar 

  • Kaiser K, Zech W (1998) Soil dissolved organic matter sorption as influenced by organic and sesquioxide coatings and sorbed sulfate. Soil Sci Am J 62:129–136

    Google Scholar 

  • Kaiser K, Guggenberger G, Haumaier L, Zech W (1997) Dissolved organic matter sorption on subsoils and minerals studied by C-13-NMR and DRIFT spectroscopy. Eur J Soil Sci 48:301–310. doi:10.1111/j.1365-2389.1997.tb00550.x

    Article  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Micahlzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304. doi:10.1097/00010694-200004000-00001

    Article  Google Scholar 

  • Katsuyama M, Ohte N (2002) Determining the sources of stormflow from the fluorescence properties of dissolved organic carbon in a forested headwater catchment. J Hydrol (Amst) 268:192–202. doi:10.1016/S0022-1694(02)00175-0

    Article  Google Scholar 

  • Kawahigashi M, Kaiser K, Kalbitz K, Rodionov A, Guggenberger G (2004) Dissolved organic matter in small streams along a gradient from discontinuous to continuous permafrost. Glob Change Biol 10:1576–1586. doi:10.1111/j.1365-2486.2004.00827.x

    Article  Google Scholar 

  • Kim S, Kaplan LA, Hatcher PG (2006) Biodegradable dissolved organic matter in a temperate and a tropical stream determined from ultra—high resolution mass spectrometry. Limnol Oceanogr 51:1054–1063

    Article  Google Scholar 

  • Lafreniére MJ, Sharp MJ (2004) The concentration and fluorescence of dissolved organic carbon (DOC) in glacial and nonglacial catchments: interpreting hydrological flow routing and DOC sources. Arct Antarct Alp Res 36:156–165. doi:10.1657/1523-0430(2004)036[0156:TCAFOD]2.0.CO;2

    Article  Google Scholar 

  • Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New York

    Google Scholar 

  • Lovely DR, Fraga JL, Coates JD, Blunt-Harris EL (1999) Humics as an electron donor for anaerobic respiration. Environ Microbiol 1:89–98. doi:10.1046/j.1462-2920.1999.00009.x

    Article  Google Scholar 

  • Lu XQ, Maie N, Childers DL, Jaffé R (2003) Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades. Water Res 37:2599–2606. doi:10.1016/S0043-1354(03)00081-2

    Article  Google Scholar 

  • MacLean R, Oswood MW, Irons JGIII, McDowell WH (1999) The effect of permafrost on stream biogeochemistry: a case study of two streams in the Alaskan Taiga. Biogeochemistry 47:239–267. doi:10.1007/BF00992909

    Article  Google Scholar 

  • Maie N, Boyer JN, Yang C, Jaffé R (2006) Spatial, geomorphological, and seasonal variability of CDOM in estuaries of the Florida coastal everglades. Hydrobiologia 569:135–150. doi:10.1007/s10750-006-0128-x

    Article  Google Scholar 

  • McKnight DM, Thurman EM, Wershaw RL, Hemond H (1985) Biogeochemistry of aquatic humic substances in Thoreau’s Bog, Concord, Massachusetts. Ecology 66:1339–1352. doi:10.2307/1939187

    Article  Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Anderson DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromacticity. Limnol Oceanogr 46:38–48

    Google Scholar 

  • Michaelson GJ, Ping CL, Kling GW, Hobbie JE (1998) The character and bioactivity of dissolved organic matter at thaw and in the spring runoff waters of the arctic tundra north slope, Alaska. J Geophys Res 103:28939–28946. doi:10.1029/98JD02650

    Article  Google Scholar 

  • Mladenov N, McKnight DM, Wolski P, Ramberg L (2005) Effects of annual flooding on dissolved organic carbon dynamics within a pristine wetland, the Okavango Delta, Botswana. Wetlands 25:622–638. doi:10.1672/0277-5212(2005)025[0622:EOAFOD]2.0.CO;2

    Article  Google Scholar 

  • Moran MA, Sheldon WM, Zepp RG (2000) Carbon loss and optical property change during long-term photochemical and biological degradation of estuarine organic matter. Limnol Oceanogr 45:1254–1264

    Article  Google Scholar 

  • Morris DP, Hargreaves BR (1997) The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of 3 lakes on the Pocono plateau. Limnol Oceanogr 42:239–249

    Google Scholar 

  • Mulholland PJ (1997) Dissolved organic matter concentration and flux in streams. In: Webster JR, Meyer JL (eds) Stream organic matter budgets, pp 122–131. J North Am Benthol Soc 16: 3–161

  • O’Donnell JA, Jones JB (2006) Nitrogen retention in the riparian zone of catchments underlain by discontinuous permafrost. Freshw Biol 51:854–864. doi:10.1111/j.1365-2427.2006.01535.x

    Article  Google Scholar 

  • Petrone KC, Jones JB, Hinzman LD, Boone RD (2006) Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res 111:G02020. doi:10.1029/2005JG000055

    Article  Google Scholar 

  • Petrone KC, Hinzman LD, Shibata H, Jones JB, Boone RD (2007) The influence of fire and permafrost on sub-arctic stream chemistry during storms. Hydrol Process 21:423–434. doi:10.1002/hyp.6247

    Article  Google Scholar 

  • Prescott CE, Vesterdal L, Preston CM, Simard SW (2004) Influence of initial chemistry on decomposition of foliar litter in contrasting forest types in British Columbia. Can J For Res 34:1714–1729. doi:10.1139/x04-040

    Article  Google Scholar 

  • Qualls RG, Haines BL (1991) Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Sci Soc Am J 55:1112–1123

    Google Scholar 

  • Raymond PA, Bauer JE (2000) Bacterial consumption of DOC during transport through a temperate estuary. Aquat Microb Ecol 22:1–12. doi:10.3354/ame022001

    Article  Google Scholar 

  • Sobczak WV, Findlay S (2002) Variation in bioavailability of dissolved organic carbon among stream hyporheic flowpaths. Ecology 83:3194–3209

    Article  Google Scholar 

  • Stedmon CA, Markager S (2005a) Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–697

    Article  Google Scholar 

  • Stedmon CA, Markager S (2005b) Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol Oceanogr 50:1415–1426

    Article  Google Scholar 

  • Stedmon CA, Markager S, Rasmus B (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254. doi:10.1016/S0304-4203(03)00072-0

    Article  Google Scholar 

  • Stedmon CA, Markager S, Tranvik L, Kronberg L, Slätis T, Martinsen W (2007) Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Mar Chem 104:227–240. doi:10.1016/j.marchem.2006.11.005

    Article  Google Scholar 

  • Stieglitz M, Shaman J, McNamara J, Engel V, Shanley J, Kling GW (2003) An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport. Global Biogeochem Cycles 17. doi:10.1029/2003GB002041

  • Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP (2005) A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 32:L21413. doi:10.1029/2005GL024413

    Article  Google Scholar 

  • Striegl RG, Dornblaser MM, Aiken GR, Wickland KP, Raymond PA (2007) Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resour Res 43:W02411. doi:10.1029/2006WR005201

    Article  Google Scholar 

  • Ussiri D, Johnson C (2004) Sorption of organic carbon fractions by spodosol mineral horizons. Soil Sci Soc Am J 68:253–262

    Article  Google Scholar 

  • Van Cleve K, Oliver L, Schlentner R, Viereck LA, Dyrness CT (1983) Productivity and nutrient cycling in taiga forest ecosystems. Can J For Res 13:747–767. doi:10.1139/x83-105

    Article  Google Scholar 

  • Viereck L, Dyrness C, Van Cleve K, Foote MJ (1983) Vegetation, soils and forest productivity in selected forest types in interior Alaska. Can J For Res 13:703–720. doi:10.1139/x83-101

    Article  Google Scholar 

  • Volk CJ, Volk CB, Kaplan LA (1997) Chemical composition of dissolved organic matter in streamwater. Limnol Oceanogr 42:39–44

    Google Scholar 

  • Waiser MJ, Robarts RD (2004) Photodegradation of DOC in a shallow prairie wetland: evidence from seasonal changes in DOC optical properties and chemical characteristics. Biogeochemistry 69:263–284. doi:10.1023/B:BIOG.0000031048.20050.4e

    Article  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708. doi:10.1021/es030360x

    Article  Google Scholar 

  • White D, Autier V, Yoshikawa K, Jones JB, Seelen S (2008) Using DOC to better understand local hydrology in a subarctic watershed. Cold Reg Sci Technol 51:68–75. doi:10.1016/j.coldregions.2007.08.005

    Article  Google Scholar 

  • Wickland KP, Neff JC (2008) Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry 87:29–47. doi:10.1007/s10533-007-9166-3

    Article  Google Scholar 

  • Wickland KP, Neff JC, Aiken GR (2007) Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems (N Y, Print) 10:1323–1340. doi:10.1007/s10021-007-9101-4

    Article  Google Scholar 

  • Xu C, Guo L, Dou F, Ping C (2009) Potential DOC production from size-fractionated Arctic tundra soils. Cold Reg Sci Technol 55:141–150. doi:10.1016/j.coldregions.2008.08.001

    Article  Google Scholar 

  • Yamashita Y, Tanoue E (2003) Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar Chem 82:255–271. doi:10.1016/S0304-4203(03)00073-2

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Rich Boone and Dan White for their valuable comments on the research and manuscript. Thanks to Emma Betts, Hannah Clilverd, Amanda Rinehart, Emily Schwing and Julia Taylor for their help in the field and laboratory. Thanks also to two anonymous reviewers for their constructive comments on the manuscript. This research was supported by Bonanza Creek Long-Term Ecological Research program (funded jointly by NSF grant DEB-0423442 and USDA Forest Service, Pacific Northwest Research Station grant PNW01-JV11261952-231). The EEM-PARAFAC work was supported through a NSF funded inter-LTER collaboration between the Bonanza Creek and Florida Coastal Everglades Long-Term Ecological Research sites. SERC contribution #401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly L. Balcarczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balcarczyk, K.L., Jones, J.B., Jaffé, R. et al. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry 94, 255–270 (2009). https://doi.org/10.1007/s10533-009-9324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-009-9324-x

Keywords

Navigation