Skip to main content

Advertisement

Log in

Naphthalene biodegradation in temperate and arctic marine microcosms

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Naphthalene, the smallest polycyclic aromatic hydrocarbon (PAH), is found in abundance in crude oil, its major source in marine environments. PAH removal occurs via biodegradation, a key process determining their fate in the sea. Adequate estimation of PAH biodegradation rates is essential for environmental risk assessment and response planning using numerical models such as the oil spill contingency and response (OSCAR) model. Using naphthalene as a model compound, biodegradation rate, temperature response and bacterial community composition of seawaters from two climatically different areas (North Sea and Arctic Ocean) were studied and compared. Naphthalene degradation was followed by measuring oxygen consumption in closed bottles using the OxiTop® system. Microbial communities of untreated and naphthalene exposed samples were analysed by polymerase chain reaction denaturing gradient gel electrophoresis (PCR–DGGE) and pyrosequencing. Three times higher naphthalene degradation rate coefficients were observed in arctic seawater samples compared to temperate, at all incubation temperatures. Rate coefficients at in situ temperatures were however, similar (0.048 day−1 for temperate and 0.068 day−1 for arctic). Naphthalene biodegradation rates decreased with similar Q10 ratios (3.3 and 3.5) in both seawaters. Using the temperature compensation method implemented in the OSCAR model, Q10 = 2, biodegradation in arctic seawater was underestimated when calculated from the measured temperate k1 value, showing that temperature difference alone could not predict biodegradation rates adequately. Temperate and arctic untreated seawater communities were different as revealed by pyrosequencing. Geographic origin of seawater affected the community composition of exposed samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PAH:

Polycyclic aromatic hydrocarbon

HC:

Hydrocarbon

OSCAR:

Oil spill contingency and response

GC:

Gas chromatography

PCR:

Polymerase chain reaction

DGGE:

Denaturing gradient gel electrophoresis

OTU:

Operational taxonomic unit

References

  • Ahn IS, Ghiorse WC, Lion LW, Shuler ML (1998) Growth kinetics of Pseudomonas putida G7 on naphthalene and occurrence of naphthalene toxicity during nutrient deprivation. Biotechnol Bioeng 59(5):587–594. doi:10.1002/(SICI)1097-0290(19980905)59:5<587:AID-BIT9>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  • Arnosti C, Jørgensen BB, Sagemann J, Thamdrup B (1998) Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Mar Ecol Prog Ser 165:59–70

    Article  CAS  Google Scholar 

  • Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren. Zeitschrift für Physik Chemie 4:226–248

    Google Scholar 

  • Atlas RM (1975) Effects of temperature and crude oil composition on petroleum biodegradation. Appl Microbiol 30(3):396–403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43(2):260–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bano N, Hollibaugh JT (2002) Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68(2):505–518. doi:10.1128/AEM.68.2.505-518.2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bauer JE, Capone DG (1985) Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediment. Appl Environ Microbiol 50(1):81–90

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brakstad OG (2008) Natural and stimulated biodegradation of petroleum in cold marine Environments. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 389–407

    Chapter  Google Scholar 

  • Brakstad OG, Bonaunet K (2006) Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0–5 °C) and bacterial communities associated with degradation. Biodegradation 17(1):71–82. doi:10.1007/s10532-005-3342-8

    Article  CAS  PubMed  Google Scholar 

  • Brakstad OG, Faksness L-G (2000) Biodegradation of water-accommodated fractions and dispersed oil in the seawater column. In: Proceedings to the SPE Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, 26–28 June 2000, Stavanger, Norway. Society for Petroleum Engineers (SPE) Paper 61466

  • Brakstad OG, Bonaunet K, Nordtug T, Johansen Ø (2004) Biotransformation and dissolution of petroleum hydrocarbons in natural flowing seawater at low temperature. Biodegradation 15(5):337–346

    Article  CAS  PubMed  Google Scholar 

  • Brakstad OG, Nonstad I, Faksness L-G, Brandvik PJ (2008) Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb Ecol 55(3):540–552. doi:10.1007/s00248-007-9299-x

    Article  PubMed  Google Scholar 

  • Brakstad OG, Booth AM, Faksness L-G, Aislabie J (2009) Microbial degradation of petroleum compounds in cold marine water and ice. In: Bej AK, Atlas RM (eds) Polar microbiology: the ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments. CRC Press, New York, pp 231–253

    Chapter  Google Scholar 

  • Brauer VS, de Jonge VN, Buma AGJ, Weissing FJ (2009) Does universal temperature dependence apply to communities? An experimental test using natural marine plankton assemblages. Oikos 118:1102–1108. doi:10.1111/j.1600-0706.2009.17371.x

    Article  Google Scholar 

  • Castle DM, Montgomery MT, Kirchman DL (2006) Effects of naphthalene on microbial community composition in the Delaware estuary. FEMS Microbiol Ecol 56(1):55–63. doi:10.1111/j.1574-6941.2006.00062.x

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Chablain PA, Philippe G, Groboillot A, Truffaut N, Guespin-Michel JF (1997) Isolation of soil psychrotrophic toluene-degrading Pseudomonas strain: influence of temperature on the growth characteristics on different substrates. Res Microbiol 148(2):153–161

    Article  CAS  PubMed  Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recaprure data with unequal catchability. Biometrics 43(4):783–791

    Article  CAS  PubMed  Google Scholar 

  • Courtes R, Bahlaoui A, Rambaud A, Deschamps F, Sunde E, Dutrieux E (1995) Ready biodegradability test in seawater: a new methodological approach. Ecotoxicol Environ Saf 31(2):142–148

    Article  CAS  PubMed  Google Scholar 

  • D’Amico S, Collins T, Marx J-C, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389. doi:10.1038/sj.embor.7400662

    Article  PubMed Central  PubMed  Google Scholar 

  • Delille D, Pelletier E, Rodriguez-Blanco A, Ghiglione J-F (2009) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-Antarctic coastal seawater. Polar Biol 32(10):1521–1528. doi:10.1007/s00300-009-0652-z

    Article  Google Scholar 

  • Deppe U, Richnow H-H, Michaelis W, Antranikian G (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9(6):461–470. doi:10.1007/s00792-005-0463-2

    Article  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208. doi:10.1038/nrmicro773

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Ellis L (2012) Benzoate pathway. University of Minnesota biocatalysis biodegradation database. http://umbbd.ethz.ch/benz2/benz2_map.html. Accessed 29 Nov 2012

  • Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, Naeem S (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Nat Acad Sci USA 103(35):13104–13109. doi:103:13104-13109

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Nat Acad Sci USA 105(22):7774–7778. doi:105:7774-7778

    Article  CAS  PubMed  Google Scholar 

  • Geiselbrecht AD, Hedlund BP, Tichi MA, Staley JT (1998) Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl Environ Microbiol 64(12):4703–4710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibbs CF, Pugh KB, Andrews AR (1975) Quantitative studies on marine biodegradation of oil II. Effect of temperature. Proc R Soc Lond B 188(1090):83–94. doi:10.1098/rspb.1975.0004

    Article  CAS  PubMed  Google Scholar 

  • Giebel HA, Kalhoefer D, Lemke A, Thole S, Gahl-Janssen R, Simon M, Brinkhoff T (2011) Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. ISME J 5(1):8–19

    Article  PubMed  Google Scholar 

  • Gilbert JA, Steele JA, Caporaso JG, Steinbru L, Reeder J, Temperton B, Huse S, McHardy AC, Knight R, Join I, Somerfield P, Fuhrman JA, Field D (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308. doi:10.1038/ismej.2011.107

    Article  CAS  PubMed  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293(5538):2248–2251. doi:10.1126/science.1061967

    Article  CAS  PubMed  Google Scholar 

  • Gold G, Rodriguez S (1988) The effect of temperature and salinity on the Setschenow parameters of naphthalene in seawater. Can J Chem 67(5):822–826. doi:10.1139/v89-127

    Article  Google Scholar 

  • Heitkamp MA, Freeman JP, Cerniglia CE (1987) Naphthalene biodegradation in environmental microcosms: estimates of degradation rates and characterization of metabolites. Appl Environ Microbiol 53(1):129–136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins ME, Adams MA (2011) Respiratory quotients and Q10 of soil respiration in sub-alpine Australia reflect influences of vegetation types. Soil Biol Biochem 43(6):1266–1274. doi:10.1016/j.soilbio.2011.02.017

    Article  CAS  Google Scholar 

  • Karhu M, Kaakinen J, Kuokkanen T, Rämö J (2009) Biodegradation of light fuel oils in water and soil as determined by the manometric respirometry method. Water Air Soil Pollut 197(1–4):3–14. doi:10.1007/s11270-008-9752-6

    Article  CAS  Google Scholar 

  • Kirchman DL (2008) Microbial ecology of the oceans, 2nd edn. Wiley, Hoboken, ISBN: 978-0-470-04344-8

  • Knoblauch C, Jørgensen BB, Harder J (1999) Community size and metabolic rates of psychrophilic sulfate reducing bacteria in Arctic marine sediments. Appl Environ Microbiol 65(9):4230–4233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuokkanen T, Vähäoja P, Välimäki I, Lauhanen R (2004) Suitability of the respirometric BOD oxitop method for determining the biodegradability of oils in ground water using forestry hydraulic oils as model compounds. Intern J Environ Anal Chem 84(9):677–689. doi:10.1080/03067310410001688435

    Article  CAS  Google Scholar 

  • Lanzén A, Jørgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I, Øvreås L, Urich T (2012) CREST—classification resources for environmental sequence tags. PLoS ONE 7(11):e49334. doi:10.1371/journal.pone.0049334

    Article  PubMed Central  PubMed  Google Scholar 

  • Latimer JS, Zheng J (2003) The sources, transport, and fate of PAHs in the marine environment. In: Douben PET (ed) PAHs: an ecotoxicological perspective, 1st edn. Wiley, West Sussex. doi:10.1002/0470867132.ch2

    Google Scholar 

  • Lauro FM, Allen MA, Wilkins D, Williams TJ, Cavicchioli R (2011) Psychrophiles: genetics, genomics, evolution. In: Horikochi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook, 1st edn. Springer, Tokyo, pp 865–891

    Chapter  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary UK. Environ Microbiol 9(1):165–176. doi:10.1111/j.1462-2920.2006.01125.x

    Article  CAS  PubMed  Google Scholar 

  • Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang XJ, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou LW, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Nat Acad Sci USA 102(31):10913–10918. doi:10.1073/pnas.0504766102

    Article  CAS  PubMed  Google Scholar 

  • Michaud L, Lo Giudice A, Saitta M, De Domenico M, Bruni V (2004) The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic marine bacteria during a two-month-long experiment. Mar Pollut Bull 49(5–6):405–409. doi:10.1016/j.marpolbul.2004.02.026

    Article  CAS  PubMed  Google Scholar 

  • Minas W, Gunkel W (1995) Oil pollution in the North Sea—a microbiological point of view. Helgoländer Meeresuntersuchungen 49(1–4):143–158. doi:10.1007/BF02368345

    Article  Google Scholar 

  • Moore MN, Livingstone DR, Widdows J (1989) Hydrocarbons in marine mollusks: biological effects and ecological consequences. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press Inc., Boca Raton, pp 291–328

    Google Scholar 

  • Niepceron M, Portet-Koltalo F, Merlin C, Motelay-Massei A, Barray S, Bodilis J (2009) Both Cycloclasticus spp. and Pseudomonas spp. as PAH-degrading bacteria in the Seine estuary (France). FEMS Microbiol Ecol 37(1):137–147. doi:10.1111/j.1574-6941.2009.00832.x

    Google Scholar 

  • OECD (1992) OECD Guidelines for testing of chemicals/section 3: degradation and accumulation. Test number 306: biodgradability in seawater. OECD publishing, Paris, ISBN: 9789264070486

  • Pampanin DM, Sydnes MO (2013) Polycyclic aromatic hydrocarbons a constituent of petroleum: Presence and influence in the aquatic environment. In: Vladimir K, Kolesnikov A (eds) Hydrocarbon. InTech, Rijeka, ISBN 978-953-51-0927-3

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Nat Acad Sci USA 101(13):4631–4636. doi:10.1073pnas.0400522101

    Article  CAS  PubMed  Google Scholar 

  • Quince C, Curtis TP, Sloan WT (2008) The rational exploration of microbial diversity. The ISME Journal 2:997–1006. doi:10.1038/ismej.2008.69

    Article  CAS  PubMed  Google Scholar 

  • Quince C, Lanzén A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38. doi:10.1186/1471-2105-12-38

    Article  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0, http://www.R-project.org

  • Reed M, Johansen Ø, Brandvik PJ, Daling P, Lewis A, Fiocco R, Mackay D, Prentki R (1999) Oil spill modeling towards the close of the 20th century: overview of the state of the art. Spill Sci Technol Bull 5(1):3–16

    Article  Google Scholar 

  • Reed M, Singsass I, Daling PS, Faksness L-G, Brakstad OG, Hetland B, Hokstad J (2001) Modelling the water-accomodated fraction in OSCAR2000. Proceedings of 2001 International Oil Spill Conference. Tampa

  • Robador A, Bruchert V, Jørgensen BB (2009) The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Environ Microbiol 11(7):1692–1703. doi:10.1111/j.1462-2920.2009.01896.x

    Article  CAS  PubMed  Google Scholar 

  • Røberg S, Østerhus JI, Landfald B (2011) Dynamics of bacterial community exposed to hydrocarbons and oleophilic fertilizer in high-Arctic intertidal beach. Polar Biol 34(10):1455–1465. doi:10.1007/s00300-011-1003-4

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Siron R, Pelletier É, Brochu C (1995) Environmental factors influencing the biodegradation of petroleum hydrocarbons in cold seawater. Arch Environ Contam Toxicol 28:406–416. doi:10.1007/BF00211621

    Article  CAS  Google Scholar 

  • Stewart PS, Tedaldi DJ, Lewis AR, Goldman E (1993) Biodegradation rates of crude oil in seawater. Water Environ Res 65(7):845–848

    Article  CAS  Google Scholar 

  • Valentine DL, Mezic I, Macesic S, Crnjaric-Zic N, Ivic S, Hogan PJ, Fonoberov VA, Loire S (2012) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Nat Acad Sci USA. doi:10.1073/pnas.1108820109

    Google Scholar 

  • Van Stempvoort D, Biggar K (2008) Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: a review. Cold Regions Sci Tech 53(1):16–41. doi:10.1016/j.coldregions.2007.06.009

    Article  Google Scholar 

  • Winkler JP, Cherry RS, Schlesinger WH (1996) The Q10 relationship of microbial respiration in a temperate forest soil. Soil Biol Biochem 28(8):1067–1072

    Article  CAS  Google Scholar 

  • Yakimov MM, Gentile G, Bruni V, Cappello S, D’Auria G, Golyshin PN, Giuliano L (2004) Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol 49(3):419–432. doi:10.1016/j.femsec.2004.04.018

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotech 18(3):257–266. doi:10.1016/j.copbio.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Essenberg C (2011) Naphthalene pathway map. University of Minnesota biocatalysis biodegradation database. http://umbbd.ethz.ch/naph/naph_map.html. Accessed 29 Nov 2012

  • Zobell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10(1–2):1–49

    CAS  PubMed Central  Google Scholar 

  • Zobell CE, Grant CW, Haas HF (1943) Marine microorganisms which oxidize petroleum hydrocarbons. AAPG Bull 27(9):1175–1193

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Total E&P Norway is gratefully acknowledged. The sample of arctic water was collected during the 2009 COPOL cruise with R/V Lance. Thanks to cruise leaders Dr. Haakon Hop and Dr. Geir Wing Gabrielsen at the Norwegian Polar Institute for assistance with the logistics and PhD students Alexey K. Pavlov and Pernilla Carlson at UNIS for help with CTD-profiling and sampling of water respectively. Dag Altin is entitled to our special thanks for personally arranging and organizing the sampling and for keeping track of the arctic water until it arrived in our laboratory. Particular thanks go to Emily Lyng (International Research Institute of Stavanger) for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagi, A., Pampanin, D.M., Lanzén, A. et al. Naphthalene biodegradation in temperate and arctic marine microcosms. Biodegradation 25, 111–125 (2014). https://doi.org/10.1007/s10532-013-9644-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-013-9644-3

Keywords

Navigation