Skip to main content

Advertisement

Log in

DDT remediation in contaminated soils: a review of recent studies

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Over the past few decades significant progress has been made in research on DDT degradation in the environment. This review is an update of some of the recent studies on the degradation and biodegradation pathways of DDT and its metabolites, particularly in soils. The latest reports on human toxicity shows that DDT intake is still occurring even in countries that banned its use decades ago. Ageing, sequestration and formation of toxic metabolites during the degradation processes pose environmental challenges and result in difficulties in bioremediation of DDT contaminated soils. Degradation enhancement strategies such as the addition of chelators, low molecular organic acids, co-solvent washing and the use of sodium and seaweeds as ameliorant have been studied to accelerate degradation. This review describes and discusses the recent challenges and degradation enhancement strategies for DDT degradation by potentially cost effective procedures based on bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahuja R, Awasthi N, Manickam N, Kumar A (2001) Metabolism of 1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene by Alcaligenes denitrificans. Biotechnol Lett 23:423–426

    Article  CAS  Google Scholar 

  • Aislabie JM, Richards NK, Boul HL (1997) Microbial degradation of DDT and its residues—a review. N Z J Agric Res 40:269–282

    Article  CAS  Google Scholar 

  • Alexander M, Guerin WF (1999) Biodegradation and bioremediation. Academic Press, San Diego

    Google Scholar 

  • Andrea MM, Luchini LC, Mello MHSH, Tomita RY, Mesquita TB, Musumeci MR (1994) Dissipation and degradation of DDT, DDE and parathion in Brazilian soils. J Environ Sci Health 29:121–132

    Article  Google Scholar 

  • Aulenta F, Majone M, Tandoi V (2006) Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. J Chem Technol Biotechnol 81:1463–1474

    Article  CAS  Google Scholar 

  • Bidlan R, Manonmani HK (2002) Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochem 38:49–56

    Article  CAS  Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    Article  CAS  Google Scholar 

  • Bosma TNP, Middeldrop PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitations of biotransformation: quantifying bioavailability. Environ Sci Technol 31: 248–252 by Mucor ramosissimus. Int Biodeterior Biodegrad 63:123–129

    Google Scholar 

  • Bylaska EJ, Dixon DA, Felmy AR, Edoardo A, Windus TL, Zhan CG, Tratnyek PG (2004) The energetics of the hydrogenolysis, dehydrohalogenation, and hydrolysis of 4,4-dichloro-diphenyl-trichloroethane from initio electronic structure theory. J Phys Chem A 108:5883–5893

    Article  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Chung TV, Khue DN, Minh DB, Cheng F (2009) Use of fungal humus for 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) polluted soil treatment. Asian J Chemis 2:5967–5972

    Google Scholar 

  • Corona-Cruz A, Gold-Bouchot G, Gutierrez-Rojas M, Monroy-Hermosillo O, Favela E (1999) Anaerobic–aerobic biodegradation of DDT (dichlorodiphenyl trichloroethane) in soils. Bull Environ Contam Toxicol 63:219–225

    Article  PubMed  CAS  Google Scholar 

  • DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen nov and a novel anaerobic dehalogenating sulfate-reducing bacterium. Arch Microbiol 154:23–30

    Article  CAS  Google Scholar 

  • Eganhouse RP, Pontolillo J (2007) Assessment of 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl) ethenyl] benzene (DDE) transformation rates on the Palos Verdes Shelf. Geological Survey, Menlo Park

    Google Scholar 

  • Fang H, Dong B, Yan H, Tang F, Yu Y (2010) Characterisation of bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J Hazard Mater 184:281–289

    Article  PubMed  CAS  Google Scholar 

  • Fisher BE (1999) Most unwanted persistent organic pollutants. Environ Health Perspect 107:18–23

    Article  Google Scholar 

  • Gao B, Liu WB, Jia LY, Xu L, Xie J (2011) Isolation and characterization of an Alcaligenes sp. strain DG-5 capable of degrading DDTs under aerobic conditions. J Environ Sci Health B 46:257–263

    Article  PubMed  CAS  Google Scholar 

  • Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497–526

    Article  CAS  Google Scholar 

  • Gevao B, Jones KC, Haygarth PM, Jarvis SC (2002) Pesticides and persistent organic pollutants. Agriculture, hydrology and water quality, CABI Publishing, Wallingford, UK

  • Häggblom MM, Bossert ID (2003) Halogenated organic compounds—a global perspective. Microbial processes and environmental applications. Kluwer, Boston

    Google Scholar 

  • Hay AG, Focht DD (1998) Cometabolism of 1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene by Pseudomonas acidovorans M3GY grown on biphenyl. Appl Environ Microbiol 64:2141–2146

    PubMed  CAS  Google Scholar 

  • Hay AG, Focht DD (2000) Transformation of 1,1-dichloro-2, 2-(4-chlorophenyl) ethane (DDD) by Ralstonia eutropha strain A5. FEMS Microbiol Ecol 31:249–253

    Article  PubMed  CAS  Google Scholar 

  • Huang HJ, Liu SM, Kuo CE (2001) Anaerobic biodegradation of DDT residues (DDT, DDD, and DDE) in estuarine sediment. J Environ Sci Health B 36:273–288

    Article  PubMed  CAS  Google Scholar 

  • Jabbar MA, Shimakoshi H, Hisaeda Y (2007) Enhanced reactivity of hydrophobic vitamin B 12 towards the dechlorination of DDT in ionic liquid. Chem Commun 16:1653–1655

    Article  Google Scholar 

  • Jagnow G, Halder K (1972) Evolution of CO2 from soil incubated with dieldrin-14C. Soil Biol Biochem 4:43

    Article  CAS  Google Scholar 

  • Jota MAT, Hassett JP (1991) Effects of environmental variables on binding of a PCB congener by dissolved humic substances. Environ Sci Technol 10:483–491

    CAS  Google Scholar 

  • Juhasz AL, Megharaj M, Naidu R (2000) Bioavailability: the major challenge (constraint) to bioremediation of organically contaminated soils. Remediation engineering of contaminated soils. Marcel Dekker, New York

    Google Scholar 

  • Kamanavalli CM, Ninnekar HZ (2004) Biodegradation of DDT by a Pseudomonas sp. Curr Microbiol 48:10–13

    Article  PubMed  CAS  Google Scholar 

  • Kantachote D, Naidu R, Williams B, McClure N, Megharaj M, Singleton I (2004a) Bioremediation of DDT-contaminated soil: enhancement by seaweed addition. J Chem Technol Biotechnol 79:632–638

    Article  CAS  Google Scholar 

  • Kantachote D, Singleton I, Naidu R, McClure N, Megharaj M (2004b) Sodium application enhances DDT transformation in a long-term contaminated soil. Water Air Soil Pollut 154:115–125

    Article  CAS  Google Scholar 

  • Kookana RS, Baskaran S, Naidu R (1998) Pesticide fate and behaviour in Australian soils in relation to contamination and management of soil and water: a review. Aust J Soil Res 36:715–764

    Article  CAS  Google Scholar 

  • Korte F, Porter PE (1970) Evaluation: biotransformation by microorganisms. J Assoc Off Anal Chem 53:494–500

    Google Scholar 

  • Luo L, Zhang S, Shan XQ, Zhu YG (2006) Oxalate and root exudates enhance the desorption of p,p′-DDT from soils. Chemosphere 63:1273–1279

    Article  PubMed  CAS  Google Scholar 

  • Macleod CJA, Morris AWJ, Semple KT (2001) The role of microorganism in ecological risk assessment of hydrophobic organic contaminants (HOCs) in soils. Adv Appl Microbiol 48:171–212

    Article  PubMed  CAS  Google Scholar 

  • Matsumura F, Boush GM (1967) Dieldrin degradation by soil microorganisms. Science 156:959–961

    Article  PubMed  CAS  Google Scholar 

  • Matsumura F, Boush GM (1968) Degradation of insecticides by a soil fungus Trichoderma viride. J Econ Entomol 61:610–612

    PubMed  CAS  Google Scholar 

  • Megharaj M, Jovcic A, Boul HL, Thiele JH (1997) Recalcitrance of 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (DDE) to cometabolic degradation by pure cultures of aerobic and anaerobic bacteria. Arch Environ Contam Toxicol 33:141–146

    Article  PubMed  CAS  Google Scholar 

  • Megharaj M, Kantachote D, Singleton I, Naidu R (2000) Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ Pollut 109:35–42

    Article  PubMed  CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Mol Biol Rev 56:482–507

    CAS  Google Scholar 

  • Morrison DE, Robertson BK, Alexander M (2000) Bioavailability to earthworms of aged DDT, DDE, DDD, and dieldrin in soil. Environ Sci Technol 34:709–713

    Article  CAS  Google Scholar 

  • Mwangi K, Boga HI, Muigai AW, Kiiyukia C, Tsanuo MK (2010) Degradation of dichlorodiphenylchloroethane (DDT) by bacterial isolates from cultivated and uncultivated soil. Afr J Microbiol Res 4:185–196

    CAS  Google Scholar 

  • Nadeau LJ, Menn FM, Breen A, Sayler GS (1994) Aerobic degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligenes eutrophus A5. Appl Environ Microbiol 60:51–55

    PubMed  CAS  Google Scholar 

  • Nam K, Kim JY (2002) Persistence and bioavailability of hydrophobic organic compounds in the environment. Geosci J 6:13–21

    Article  Google Scholar 

  • Nam K, Kukor JJ (2003) Bioavailability of organohalides. Microbial processes and environmental applications. Kluwer, Dodrecht

    Google Scholar 

  • Nies L, Vogel TM (1990) Effects of organic substrates on dechlorination of Aroclor in anaerobic sediments. Appl Environ Microbiol 56:2612–2617

    PubMed  CAS  Google Scholar 

  • Niu J, Wang J, Cui D, Liu X, Guang H (2012) Study on the isolation, identification and degradation characterisation of a DDT-degrading bacteria. Adv Mater Res 518–523:2030–2033

    Article  Google Scholar 

  • Patil KC, Matsumura F, Boush GM (1970) Degradation of endrin, aldrin and DDT by soil microorganisms. Appl Environ Microbiol 19:879–881

    CAS  Google Scholar 

  • Providenti MA, Lee H, Trevors JT (1993) Selected factors limiting the microbial degradation of recalcitrant compounds. J Ind Microbiol Biotechnol 12:379–395

    CAS  Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010a) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegrad 64:397–402

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Kondo R (2010b) Involvement of Fenton reaction in DDT degradation by brown-rot fungi. Int Biodeterior Biodegrad 64:560–565

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Kondo R (2011) Basic studies and applications on bioremediation of DDT: a review. Int Biodeterior Biodegrad 65:921–930

    Article  CAS  Google Scholar 

  • Quensen JF III, Tiedje JM, Jain MK, Mueller SA (2001) Factors controlling the rate of DDE dechlorination to DDMU in Palos Verdes margin sediments under anaerobic conditions. Environ Sci Technol 35:286–291

    Article  PubMed  CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments: a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    Article  PubMed  CAS  Google Scholar 

  • Robertson BK, Alexander M (1998) Sequestration of DDT and dieldrin in soil: disappearance of acute toxicity but not the compounds. Environ Toxicol Chem 17:1034–1038

    Article  CAS  Google Scholar 

  • Samuel T, Pillai MK (1989) The effect of temperature and solar radiations on volatilisation, mineralisation and degradation of [14C]-DDT in soil. Environ Pollut 57:63–77

    Article  PubMed  CAS  Google Scholar 

  • Satapanajaru T, Comfort SD, Shea PJ (2003) Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment. J Environ Qual 32:1726–1734

    Article  PubMed  CAS  Google Scholar 

  • Satapanajaru T, Anurakpongsatorn P, Songsasen A, Boparai H, Park J (2006) Using low-cost iron by products from automotive manufacturing to remediate DDT. Water Air Soil Pollut 175:361–374

    Article  CAS  Google Scholar 

  • Schlebaum W, Badora A, Schraa G, van Reimsdijk WH (1998) Interaction between a hydrophobic organic chemical and natural organic matter: equilibrium and kinetic studies. Environ Sci Technol 32:2273–2277

    Article  CAS  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    Article  CAS  Google Scholar 

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228–231

    Article  Google Scholar 

  • Senesi JF III, Mueller SA, Jain MK, Tiedje JM (1998) Reductive dechlorination of DDE to DDMU in marine sediment microcosms. Science 280:722–724

    Article  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: Developments, current practices and perspectives. Genet Eng Biotechnol J 3:1–20

    CAS  Google Scholar 

  • Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73

    Article  PubMed  CAS  Google Scholar 

  • Smith E, Smith J, Naidu R, Juhasz AL (2004) Desorption of DDT from a contaminated soil using cosolvent and surfactant washing in batch experiments. Water Air Soil Pollut 151:71–86

    Article  CAS  Google Scholar 

  • Szewczyk R, Dlugonski J (2009) Pentachlorophenol and spent engine oil degradation by Mucor ramosissimus. Int Biodeterior Biodegrad 63:123–129

    Article  CAS  Google Scholar 

  • Thomas JE, Gohil H (2011) Microcosm studies on the degradation of o, p0- and p, p0-DDT, DDE, and DDD in a muck soil. World J Microbiol Biotechnol 27:619–625

    Article  CAS  Google Scholar 

  • Wang GL, Bi M, Liang JD, Li SP (2011) Pseudoxanthomonas jiangsuensis sp. nov., a DDT-degrading bacterium isolated from a long-term DDT-polluted soil. Curr Micrbiol 62:1760–1766

    Article  CAS  Google Scholar 

  • White JC, Mattina MJI, Lee WY, Eitzer BD, Iannucci-Berger W (2003) Role of organic acids in enhancing the desorption and uptake of weathered p,p′-DDE by Cucurbita pepo. Environ Pollut 124:71–80

    Article  PubMed  CAS  Google Scholar 

  • Wiegel J, Wu Q (2000) Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol 32:1–15

    Article  PubMed  CAS  Google Scholar 

  • Wilson SC, Naidu R (2008) Organic contaminant speciation and bioavailability in the terrestrial environment. Developments in soil science. Elsevier, London

    Google Scholar 

  • Xie H, Zhu L, Xu Q, Wang J, Liu W, Jiang J, Meng Y (2011) Isolation and degradation ability of the DDT-degrading bacterial strain KK. Environ Earth Sci 62:93–99

    Article  CAS  Google Scholar 

  • Xing B, Pignatello JJ (1997) Dual-model sorption of low-polarity compounds in glassy poly (Vinyl chloride) and soil organic matter. Environ Sci Technol 31:792–799

    Article  CAS  Google Scholar 

  • Yang Y, Ratte D, Smets BF, Pignatello JJ, Grasso D (2001) Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere 43:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Yim YJ, Seo J, Kang SI, Ahn JH, Hur HG (2008) Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium Eubacterium limosum under anaerobic conditions. Arch Environ Contam Toxicol 54:406–411

    Article  PubMed  CAS  Google Scholar 

  • You G, Sayles GD, Kupferle MJ, Kim IS, Bishop PL (1996) Anaerobic DDT biotransformation: enhancement by application of surfactants and low oxidation reduction potential. Chemosphere 32:2269–2284

    Article  CAS  Google Scholar 

  • Zayed SMAD, Mostafa IY, El-Arab AE (1994) Chemical and biological release of 14C bound residues from soil treated with 14C-p,p′-DDT. J Environ Sci Health 29:169–175

    Article  Google Scholar 

  • Zhao Y, Yi X (2010) Effects of soil oxygen condition and soil pH on remediation of DDT-contaminated soil by laccase from white rot fungi. Int J Environ Res Public Health 7:1612–1621

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the University of South Australia through a University President Scholarship (UPS) in collaboration with Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Naidu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudharshan, S., Naidu, R., Mallavarapu, M. et al. DDT remediation in contaminated soils: a review of recent studies. Biodegradation 23, 851–863 (2012). https://doi.org/10.1007/s10532-012-9575-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9575-4

Keywords

Navigation