Skip to main content
Log in

Reductive Dechlorination of Methoxychlor and DDT by Human Intestinal Bacterium Eubacterium limosum Under Anaerobic Conditions

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Methoxychlor [1,1,1-trichloro-2,2-bis(p-methoxyphenyl)ethane], a substitute for 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), is a compound of environmental concern because of potential long-term health risks related to its endocrine-disrupting and carcinogenic potency. In order to determine the metabolic fate of methoxychlor and DDT in the human intestinal gut, Eubacterium limosum (ATCC 8486), a strict anaerobe isolated from the human intestine that is capable of O-demethylation toward O-methylated isoflavones, was used as a model intestinal microbial organism. Under anaerobic incubation conditions, E. limosum completely transformed methoxychlor and DDT in 16 days. Based on gas chromatography–mass chromatography analyses, the metabolites produced from methoxychlor and DDT by E. limosum were confirmed to be 1,1-dichloro-2,2-bis(p-methoxyphenyl)ethane (methoxydichlor) and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD), respectively. This study suggests that E. limosum in the human intestinal gut might be a participant in the reductive dechlorination of methoxychlor to the more antiandrogenic active methoxydichlor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahuja R, Kumar A (2003) Metabolism of DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] by Alcaligenes denitrificans ITRC-4 under aerobic and anaerobic conditions. Curr Microbiol 46:65–69

    Article  CAS  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  CAS  Google Scholar 

  • Baarschers WH, Bharath AI, Elvish J, Davies M (1982) The biodegradation of methoxychlor by Klebsiella pneumoniae. Can J Microbiol 28:176–179

    Article  CAS  Google Scholar 

  • Chapin RE, Harris MW, Davis BJ, Ward SM, Wilson RE, Mauney MA, Lockhart AC, Smialowicz RJ, Moser VC, Burka LT, Collins BJ (1997) The effects of perinatal/juvenile methoxychlor exposure on adult rat nervous, immune, and reproductive system function. Fundam Appl Toxicol 40:138–157

    Article  CAS  Google Scholar 

  • Clark AG, Shamaan NA (1984) Evidence that DDT-dehydrochlorinase from the housefly is a glutathione S-transferase. Pesticide Biochem Physiol 22:249–261

    Article  CAS  Google Scholar 

  • Cocco P (2002) On the rumors about the silent spring. Review of the scientific evidence linking occupational and environmental pesticide exposure to endocrine disruption health effects. Cad Saude Publica 18:379–402

    Article  Google Scholar 

  • Cummings AM (1997) Methoxychlor as a model for environmental estrogens. Crit Rev Toxicol 27:367–379

    Article  CAS  Google Scholar 

  • Dull BJ, Salata K, Goldman P (1987) Role of the intestinal flora in the acetylation of sulfasalazine metabolites. Biochem Pharmacol 36:3772–3774

    Article  CAS  Google Scholar 

  • Fisher JS (2004) Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome. Reproduction 127:305–315

    Article  CAS  Google Scholar 

  • Fogel S, Lancione RL, Sewall AE (1982) Enhanced biodegradation of methoxychlor in soil under sequential environmental conditions. Appl Environ Microbiol 44:113–120

    CAS  Google Scholar 

  • Fort DJ, Guiney PD, Weeks JA, Thomas JH, Rogers RL, Noll AM, Spaulding CD (2004) Effect of methoxychlor on various life stages of Xenopus laevis. Toxicol Sci 81:454–466

    Article  CAS  Google Scholar 

  • Gaido KW, Leonard LS, Maness SC, Hall JM, McDonnell DP, Saville B, Safe S (1999) Differential interaction of the methoxychlor metabolite 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane with estrogen receptors alpha and beta. Endocrinology 140:5746–5753

    Article  CAS  Google Scholar 

  • Herrera A, Arino P, Conchello P, Lazaro R, Bayarri S, Perez-Arquillue C, Garrido D, Jodral M, Pozo R (1996) Estimates of mean daily intakes of persistent organochlorine pesticides from spanish fatty foodstuffs. Bull Environ Contam Toxicol 56:173–177

    Article  CAS  Google Scholar 

  • Hirai H, Nakanishi S, Nishida T (2004) Oxidative dechlorination of methoxychlor by ligninolytic enzymes from white-rot fungi. Chemosphere 55:641–645

    Article  CAS  Google Scholar 

  • Hur HG, Rafii F (2000) Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol Lett 192:21–25

    Article  CAS  Google Scholar 

  • Jandacek RJ, Tso P (2001) Factors affecting the storage and excretion of toxic lipophilic xenobiotics. Lipids 36:1289–1305

    Article  CAS  Google Scholar 

  • Kitamura S, Shimizu Y, Shiraga Y, Yoshida M, Sugihara K, Ohta S (2002) Reductive metabolism of p,p′-DDT ad o,p′-DDT by rat liver cytochrome P450. Drug Metabol Dispos 30:113–118

    Article  CAS  Google Scholar 

  • Llados F, Sage G, Citra M, Gefell D (2002) Toxicological profile for DDT, DDE and DDD (Update). TP-35. Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA

    Google Scholar 

  • Mendel JL, Walton MS (1966) Conversion of p,p′-DDT to p,p′-DDD by intestinal flora of the rat. Science 151:1527–1528

    Article  CAS  Google Scholar 

  • Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inotomi K, Furukawa K, Inri M, Yukawa H (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188:2262–2274

    Article  CAS  Google Scholar 

  • Peppercorn MA, Goldman P (1971) Caffeic acid metabolism by bacteria of the human gastrointestinal tract. J Bacteriol 108:996–1000

    CAS  Google Scholar 

  • Saka M (2003) Developmental toxicity of p,p′-dichlorodiphenyltrichloroethane, 2,4,6-trinitrotoluene, their metabolites, and benzopyrene in Xenopus laevis embryos. Environ Toxicol Chem 23:1065–1073

    Article  Google Scholar 

  • Simon GL, Gorbach SL (1986) The human intestinal microflora. Dig Dis Sci 31:147S–162S

    Article  CAS  Google Scholar 

  • Staub C, Hardy VB, Chapin RE, Harris MW, Johnson L (2002) The hidden effect of estrogenic/antiandrogenic methoxychlor on spermatogenesis. Toxicol Appl Pharmacol 180:129–135

    Article  CAS  Google Scholar 

  • Stuchal LD, Kleinow KM, Stegeman JJ, James MO (2006) Demethylation of the pesticide methoxychlor in liver and intestine from untreated, methoxychlor-treated and 3-methylcholanthrene-treated channel catfish (Ictalurus punctatus): evidence for roles of CYP1 and 3A family isozymes. Drug Metab Dispos 34:932–938

    CAS  Google Scholar 

  • Sugihara K, Kitamura S, Ohta S (1998) Reductive dechlorination of DDT to DDD by rat blood. Biochem Mol Biol Int 45:85–91

    CAS  Google Scholar 

  • Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ, Tiedje JM, Loffler FE (2003) Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol 69:2964–2974

    Article  CAS  Google Scholar 

  • Wackett LP, Sadowsky MJ, Newman LM, Hur HG, Li S (1994) Metabolism of polyhalogenated compounds by a genetically engineered bacterium. Nature 368:627–629

    Article  CAS  Google Scholar 

  • Wolfe NL, Zepp RG, Paris DE, Boughman GL (1977) Methoxychlor and DDT degradation in water rates and products. Environ Sci Technol 11:1077–1081

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. R. A. Kanaly at Kyoto University, Japan for editorial comments. This work was supported by grants from the MOST/KOSEF to the Environmental Biotechnology National Core Research Center (grant No. R15-2003-012-02002-0) of Korea and the Sustainable Water Resources Research Center of 21st Century Frontier R&D program through the Center for Water Research at Gwangju Institute of Science and Technology in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hor-Gil Hur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yim, YJ., Seo, J., Kang, SI. et al. Reductive Dechlorination of Methoxychlor and DDT by Human Intestinal Bacterium Eubacterium limosum Under Anaerobic Conditions. Arch Environ Contam Toxicol 54, 406–411 (2008). https://doi.org/10.1007/s00244-007-9044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-007-9044-y

Keywords

Navigation