Skip to main content
Log in

Biotransformation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (4,4′-DDT) on a Sandy Loam Soil using aerobic bacterium Corynebacterium sp.

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (4,4′-DDT) is an organochlorine pesticide known for its health and environmental hazards and recalcitrance. The objective of this study was to investigate the biodegradation potential of 4,4′-DDT in sandy loam soil using the aerobic bacterium Corynebacterium sp. over a full year. Two separate conditions were evaluated 35 mg/kg aged for 60 days and 18 mg/kg aged for 200 days. Destructive samples of the soil and aqueous phase were analyzed at 7, 14, 28 days, 3, 6, 9 months and 1 year. The total DDT degradation results for the inoculated experiments at 35 ± 9 mg/kg (60 day aged) and 18 ± 2 mg/kg (200 days aged) concentrations were 7.7 and 5.7 %, respectively. This corresponded to 0.225 and 0.086 mg/year DDT degradation, with the main metabolites observed being DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane) and DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene). Metabolite formation was minimal, in the interval of 0.008–0.064 mg/year DDE and 0.081–0.302 mg/year DDD. DDT was seen to remain mostly in the soil, while the metabolites were measured only in the aqueous phase. This is believed to be the first documented evidence of Corynebacterium sp. (ATCC 49955) actively facilitating partial DDT degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahuja R, Kumar A (2003) Metabolism of DDT [1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl) ethane] by Alcaligenes denitrificans ITRC-4 under aerobic and anaerobic conditions. Curr Microbiol 46(1):65–69

    Article  Google Scholar 

  • Aislabie JM, Richards NK, Boul HL (1997) Microbial degradation of DDT and its residues—a review. NZ J Agricul Res 40(2):269–282

    Article  Google Scholar 

  • Asturias JA, Moore E, Yakimov MM, Klatte S, Timmis KN (1994) Reclassification of the polychlorinated biphenyl-degraders Acinetobacter sp. strain P6 and Corynebacterium sp. strain MB1 as Rhodococcus globerulus. System. Appl Microbiol 17(2):226–231

    Article  Google Scholar 

  • Barragán-Huerta BE, Costa-Pérez C, Peralta-Cruz J, Barrera-Cortés J, Esparza-García F, Rodríguez-Vázquez R (2007) Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. Int Biodeterior Biodeg 59(3):239–244

    Article  Google Scholar 

  • Barriada-Pereira M, Serodio P, Gonzalez-Castro MJ, Nogueira JMF (2010) Determination of organochlorine pesticides in vegetable matrices by stir bar sorptive extraction with liquid desorption and large volume injection-gas chromatography–mass spectrometry towards compliance with European Union directives. J Chromat A 1217(1):119–126

    Article  Google Scholar 

  • Bedard DL, Unterman R, Bopp LH, Brennan MJ, Haberl ML, Johnson C (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl Environ Microbiol 51(4):761–768

    Google Scholar 

  • Beunink J, Rehm HJ (1988) Synchronous anaerobic and aerobic degradation of DDT by an immobilized mixed culture system. Appl Microbiol Biotechnol 29(1):72–80

    Article  Google Scholar 

  • Brinch UC, Ekelund F, Jacobsen CS (2002) Method for spiking soil samples with organic compounds. Appl Environ Microbiol 68(4):1808–1816

    Article  Google Scholar 

  • Chiu TC, Yen JH, Liu TL, Wang YS (2004) Anaerobic degradation of the organochlorine pesticides DDT and heptachlor in river sediment of Taiwan. Bull Environ Contamin Toxicol 72(4):821–828

    Article  Google Scholar 

  • Doong RA, Liao PL (2001) Determination of organochlorine pesticides and their metabolites in soil samples using headspace solid-phase microextraction. J Chromat A 918(1):177–188

    Article  Google Scholar 

  • Erdem Z, Cutright TJ (2015) Sorption/desorption of 1, 1, 1-trichloro-2, 2-bis (p-chlorophenyl) ethane (4, 4′-DDT) on a sandy loam soil. Environ Monitor Assess 187(2):1–12

    Article  Google Scholar 

  • Fang H, Dong B, Yan H, Tang F, Yu Y (2010) Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J Hazard Mater 184(1):281–289

    Article  Google Scholar 

  • Gao B, Liu WB, Jia LY, Xu L, Xie J (2011) Isolation and characterization of an Alcaligenes sp. strain DG-5 capable of degrading DDTs under aerobic conditions. J Environ Sci Health, Pt B 46(3):257–263

    Article  Google Scholar 

  • Gautam SK, Suresh S (2009) Biodegradation of 1, 1-diphenylethylene and 1, 1-diphenylethane by Pseudomonas putida PaW 736. Current Sci 96(9):1247

    Google Scholar 

  • Hay AG, Focht DD (2000) Transformation of 1, 1-dichloro-2, 2-(4-chlorophenyl) ethane (DDD) by Ralstonia eutropha strain A5. FEMS Microbiol Ecol 31(3):249–253

    Article  Google Scholar 

  • Ho KL, Lin B, Chen YY, Lee DJ (2009) Biodegradation of phenol using Corynebacterium sp. DJ1 aerobic granules. Bioresour Technol 100(21):5051–5055

    Article  Google Scholar 

  • Hwang S, Cutright TJ (2002) Impact of clay minerals and DOM on the competitive sorption/desorption of PAHs. Soil Sediment Contam 11(2):269–291

    Article  Google Scholar 

  • Kamanavalli CM, Ninnekar HZ (2004) Biodegradation of DDT by a Pseudomonas species. Curr Microbiol 48(1):10–13

    Article  Google Scholar 

  • Kantachote D, Singleton I, Naidu R, McClure N, Megharaj M (2004) Sodium application enhances DDT transformation in a long-term contaminated soil. Water Air Soil Pollut 154(1–4):115–125

    Article  Google Scholar 

  • Karapanagioti HK, Kleineidam S, Sabatini DA, Grathwohl P, Ligouis B (2000) Impacts of heterogeneous organic matter on phenanthrene sorption: equilibrium and kinetic studies with aquifer material. Environ Sci Technol 34(3):406–414

    Article  Google Scholar 

  • Lee HH, Lincoff A, Beose BL, Cole FA, Ferraro SP, Lamberson JO, Ozretich RJ, Randal RC, Rukavina KR, Schutls DW, Scru KA, Specht DT, Swartz RC, Young DR (1994) Ecological risk assessment of the marine sediments at the United Heckathorn Superfund site. ERL-N 269:1–298

    Google Scholar 

  • Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, Feng CH (2010) Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environ Pollut 158(5):1733–1740

    Article  Google Scholar 

  • Lohmann R, Breivik K, Dachs J, Muir D (2007) Global fate of POPs: current and future research directions. Environ Pollut 150(1):150–165

    Article  Google Scholar 

  • Maghsoudi S, Kheirolomoom A, Vossoughi M, Tanaka E, Katoh S (2000) Selective desulfurization of dibenzothiophene by newly isolated Corynebacterium sp. strain P32C1. Biochem Eng J 5(1):11–16

    Article  Google Scholar 

  • Martinkova L, Uhnakova B, Patek M, Nesvera J, Kren V (2009) Review: Biodegradation potential of the genus Rhodococcus. Env Int 35:162–177

    Article  Google Scholar 

  • Mechlińska A, Gdaniec-Pietryka M, Wolska L, Namieśnik J (2009) Evolution of models for sorption of PAHs and PCBs on geosorbents. Trends Anal Chem 28(4):466–482

    Article  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Internat 37(8):1362–1375

    Article  Google Scholar 

  • Nadeau LJ, Menn FM, Breen A, Sayler GS (1994) Aerobic degradation of 1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl) ethane (DDT) by Alcaligenes eutrophus A5. Appl Environ Microbiol 60(1):51–55

    Google Scholar 

  • Nadeau LJ, Sayler GS, Spain JC (1998) Oxidation of 1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl) ethane (DDT) by Alcaligenes eutrophus A5. Arch Microbiol 171(1):44–49

    Article  Google Scholar 

  • Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12(4):421–444

    Article  Google Scholar 

  • Oladimeji AT, Ngozi OC, Richard N (2012) Kinetics of degradation of Anthracene by the activity of Corynebacteria sp. and Pseudomonas putida in contaminated water. Internat J Chem Sci Appl 3(2), 314–322

  • Olaniran AO, Babalola GO, Okoh AI (2001) Aerobic dehalogenation potentials of four bacterial species isolated from soil and sewage sludge. Chemosphere 45(1):45–50

    Article  Google Scholar 

  • Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177(1):81–89

    Article  Google Scholar 

  • Porto ALM, Melgar GZ, Kasemodel MC, Nitschke M (2011) Biodegradation of pesticides. Pestici in the Mod world—Pestici use and Manag. InTech 407–438

  • Purnomo AS, Mori T, Kamei I, Kondo R (2011) Basic studies and applications on bioremediation of DDT: a review. Internat Biodeter Biodeg 65(7):921–930

    Article  Google Scholar 

  • Rahman KSM, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Biores Technol 85(3):257–261

    Article  Google Scholar 

  • Shen L, Wania F (2005) Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides. J Chem Eng Data 50(3):742–768

    Article  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21(3):123–130

    Article  Google Scholar 

  • Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48(1):35–40

    Article  Google Scholar 

  • Sporring S, Bøwadt S, Svensmark B, Björklund E (2005) Comprehensive comparison of classic Soxhlet extraction with Soxtec extraction, ultrasonication extraction, supercritical fluid extraction, microwave assisted extraction and accelerated solvent extraction for the determination of polychlorinated biphenyls in soil. J Chromat A, 1090 1:1–9

    Article  Google Scholar 

  • Sudharshan S, Naidu R, Mallavarapu M, Bolan N (2012) DDT remediation in contaminated soils: a review of recent studies. Biodeg 23(6):851–863

    Article  Google Scholar 

  • Turgut C, Atatanir L, Cutright TJ (2010) Evaluation of pesticide contamination in Dilek National Park, Turkey. Environ Monitor Assess 170(1–4):671–679

    Article  Google Scholar 

  • Takeno S, Ohnishi J, Komatsu T, Masaki T, Sen K, Ikeda M (2007) Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum. Appl Microbiol Biotechnol 75(5):1173–1182

    Article  Google Scholar 

  • Thangavadivel K, Megharaj M, Smart RSC, Lesniewski PJ, Bates D, Naidu R (2011) Ultrasonic enhanced desorption of DDT from contaminated soils. Water Air Soil Pollut 217(1–4):115–125

    Article  Google Scholar 

  • Thiele-Bruhn S, Seibicke T, Schulten HR, Leinweber P (2004) Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J Environ Qual 33(4):1331–1342

    Article  Google Scholar 

  • UM-BBD (University of Minnesota Biocatalysis and Biodegradation Database), www.msi.umn.edu/content/university-minnesota-biocatalysis-and-biodegradation-database. Accessed Aug 2016

  • van den Berg H (2009) Global status of DDT and its alternatives for use in vector control to prevent disease. Environ Health Perspect 117(1):1656–1663

    Article  Google Scholar 

  • van den Hoop MA, Kreule P, Loch JG (1999) Sorption kinetics and transformation of DDT in sediment. Water Air Soil Pollut 110(1–2):57–66

    Article  Google Scholar 

  • WHO (World Health Organization), (2001) Action plan for the reduction of reliance on DDT in disease vector control, including the report of an expert consultation on the implementation of WHA50.13, with reference to the reduction in reliance on DDT of vector control programmes. WHO/SDE/WSH/01.05

  • Wu CY, Zhuang L, Zhou SG, Li FB, He J (2011) Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. Int J Sys Evolut Microbiol 61(4), 882–887

  • Xie H, Zhu L, Xu Q, Wang J, Liu W, Jiang J, Meng Y (2011) Isolation and degradation ability of the DDT-degrading bacterial strain KK. Environ Earth Sci 62(1):93–99

    Article  Google Scholar 

  • Yu HY, Bao LJ, Liang Y, Zeng EY (2011) Field validation of anaerobic degradation pathways for dichlorodiphenyltrichloroethane (DDT) and 13 metabolites in marine sediment cores from China. Environ Sci Technol 45(12):5245–5252

    Article  Google Scholar 

  • Zhao Y, Yi X, Li M, Liu L, Ma W (2010) Biodegradation kinetics of DDT in soil under different environmental conditions by Lacasse extract from white rot fungi. Biotechnol Bioeng 18(3):486–492

    Google Scholar 

Download references

Acknowledgments

This research was unfunded. Therefore, there are no agencies to acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa J. Cutright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, Z., Cutright, T.J. Biotransformation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (4,4′-DDT) on a Sandy Loam Soil using aerobic bacterium Corynebacterium sp.. Environ Earth Sci 75, 1267 (2016). https://doi.org/10.1007/s12665-016-6057-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6057-8

Keywords

Navigation