Skip to main content

Advertisement

Log in

Estimating the biodegradation of pesticide in soils by monitoring pesticide-degrading gene expression

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Assessing in situ microbial abilities of soils to degrade pesticides is of great interest giving insight in soil filtering capability, which is a key ecosystem function limiting pollution of groundwater. Quantification of pesticide-degrading gene expression by reverse transcription quantitative PCR (RT-qPCR) was tested as a suitable indicator to monitor pesticide biodegradation performances in soil. RNA extraction protocol was optimized to enhance the yield and quality of RNA recovered from soil samples to perform RT-qPCR assays. As a model, the activity of atrazine-degrading communities was monitored using RT-qPCRs to estimate the level of expression of atzD in five agricultural soils showing different atrazine mineralization abilities. Interestingly, the relative abundance of atzD mRNA copy numbers was positively correlated to the maximum rate and to the maximal amount of atrazine mineralized. Our findings indicate that the quantification of pesticide-degrading gene expression may be suitable to assess biodegradation performance in soil and monitor natural attenuation of pesticide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ameziane N, Bogard M, Lamoril J (2006) Principes de biologie moléculaire en biologie clinique, Elsevier, Paris

  • Arbeli Z, Fuentes C (2010) Prevalence of the gene trzN and biogeographic patterns among atrazine-degrading bacteria isolated from 13 Colombian agricultural soils. FEMS Microbiol Ecol 73:611–623

    PubMed  CAS  Google Scholar 

  • Baelum J, Henriksen T, Hansen HCB, Jacobsen CS (2006) Degradation of 4-chloro-2-methylphenoxyacetic acid in top- and subsoil is quantitatively linked to the class III tfdA gene. Appl Environ Microbiol 72:1476–1486

    Article  PubMed  CAS  Google Scholar 

  • Baelum J, Nicolaisen MH, Holben WE, Strobel BW, Sorensen J, Jacobsen CS (2008) Direct analysis of tfdA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil. ISME J 2:677–687

    Article  PubMed  CAS  Google Scholar 

  • Bending GD, Lincoln SD, Edmondson RN (2006) Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environ Pollut 139:279–287

    Article  PubMed  CAS  Google Scholar 

  • Bers K, Sniegowski K, De Mot R, Springael D (2012) Dynamics of the linuron hydrolase libA gene pool size in response to linuron application and environmental perturbations in agricultural soil and on-farm biopurification systems. Appl Environ Microb 78:2783–2789

    Article  CAS  Google Scholar 

  • Bouskill NJ, Barnhart EP, Galloway TS, Handy RD, Ford TE (2007) Quantification of changing Pseudomonas aeruginosa sodA, htpX and mt gene abundance in response to trace metal toxicity: a potential in situ biomarker of environmental health. FEMS Microbiol Ecol 60:276–286

    Article  PubMed  CAS  Google Scholar 

  • Calvet R, Barriuso E, Bedos C, Benoit P, Charnay M-P, Coquet Y (2005) Les pesticides dans le sol, conséquences agronomiques et environnementales, Paris

  • Cheyns K, Martin-Laurent F, Bru D, Aamand J, Vanhaecke L, Diels J, Merckx R, Smolders E, Springael D (2012) Long-term dynamics of the atrazine mineralization potential in surface and subsurface soil in an agricultural field as a response to atrazine applications. Chemosphere 86:1028–1034

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–534

    PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Commissariat Général au Développement (2011) Bilan de présence des micropolluants dans les millieux aquatiques continentaux

  • Courty PE, Poletto M, Duchaussoy F, Buée M, Garbaye J, Martin F (2008) Gene transcription of Lactarius quietus: Quercus petraea ectomycorrhizas from a forest soil. Appl Environ Microb 74:6598–6605

    Article  CAS  Google Scholar 

  • Da Silva MLB, Alvarez PJJ (2007) Assessment of anaerobic benzene degradation potential using 16S rRNA gene-targeted real-time PCR. Environ Microbiol 9:72–80

    Article  PubMed  Google Scholar 

  • de Souza ML, Sadowsky MJ, Wackett LP (1996) Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterization. J Bacteriol 178:4894–4900

    PubMed  Google Scholar 

  • de Souza ML, Seffernick J, Martinez B, Sadowsky MJ, Wackett LP (1998a) The atrazine catabolism genes atzABC are widespread and highly conserved. J Bacteriol 180:1951–1954

    PubMed  Google Scholar 

  • de Souza ML, Wackett LP, Sadowsky MJ (1998b) The atzABC genes encoding atrazine catabolism are located on a self-transmissible plasmid in Pseudomonas sp. strain ADP. Appl Environ Microbiol 64:2323–2326

    PubMed  Google Scholar 

  • DeBruyn JM, Chewning CS, Sayler GS (2007) Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments. Environ Sci Technol 41:5426–5432

    Article  PubMed  CAS  Google Scholar 

  • Devers M, Soulas G, Martin-Laurent F (2004) Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Meth 56:3–15

    Article  CAS  Google Scholar 

  • Devers M, Azhari NE, Kolic N-U, Martin-Laurent F (2007) Detection and organization of atrazine-degrading genetic potential of seventeen bacterial isolates belonging to divergent taxa indicate a recent common origin of their catabolic functions. FEMS Microbiol Lett 273:78–86

    Article  PubMed  CAS  Google Scholar 

  • Dominguez R, da Silva M, McGuire T, Adamson D, Newell C, Alvarez P (2008) Aerobic bioremediation of chlorobenzene source-zone soil in flow-through columns: performance assessment using quantitative PCR. Biodegradation 19:545–553

    Article  PubMed  CAS  Google Scholar 

  • Dong D, Yan A, Liu H, Zhang X, Xu Y (2006) Removal of humic substances from soil DNA using aluminium sulfate. J Microbiol Meth 66:217–222

    Article  CAS  Google Scholar 

  • El Sebaï T, Devers-Lamrani M, Changey F, Rouard N, Martin-Laurent F (2011) Evidence of atrazine mineralization in a soil from the Nile Delta: isolation of Arthrobacter sp. TES6, an atrazine-degrading strain. Int Biodeterior Biodegrad 65:1249–1255

    Article  Google Scholar 

  • Fukumori F, Hausinger RP (1993) Purification and characterization of 2,4-dichlorophenoxyacetate/alpha-ketoglutarate dioxygenase. J Biol Chem 268:24311–24317

    PubMed  CAS  Google Scholar 

  • Garcia-Gonzalez V, Govantes F, Porrua O, Santero E (2005) Regulation of the Pseudomonas sp. strain ADP cyanuric acid degradation operon. J Bacteriol 187:155–167

    Article  PubMed  CAS  Google Scholar 

  • Gonod LV, Martin-Laurent F, Chenu C (2006) 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil. FEMS Microbiol Ecol 58:529–537

    Article  PubMed  CAS  Google Scholar 

  • He ZL, Gentry TJ, Schadt CW, Wu LY, Liebich J, Chong SC, Huang ZJ, Wu WM, Gu BH, Jardine P, Criddle C, Zhou J (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77

    Article  PubMed  CAS  Google Scholar 

  • Helbling DE, Ackermann M, Fenner K, Kohler H-PE, Johnson DR (2011) The activity level of a microbial community function can be predicted from its metatranscriptome. ISME J 6:902–904

    Article  PubMed  Google Scholar 

  • Houot S, Topp E, Yassir A, Soulas G (2000) Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biol Biochem 32:615–625

    Article  CAS  Google Scholar 

  • Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, Zhou J (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microb 67:4495–4503

    Article  CAS  Google Scholar 

  • Kazy SK, Monier AL, Alvarez PJJ (2010) Assessing the correlation between anaerobic toluene degradation activity and bssA concentrations in hydrocarbon-contaminated aquifer material. Biodegradation 21:793–800

    Article  PubMed  CAS  Google Scholar 

  • Kong WD, Nakatsu CH (2010) Optimization of RNA extraction for PCR quantification of aromatic compound degradation genes. Appl Environ Microb 76:1282–1284

    Article  CAS  Google Scholar 

  • Liebich J, Wachtmeister T, Zhou J, Burauel P (2009) Degradation of diffuse pesticide contaminants: screening for microbial potential using a functional gene microarray. Vadose Zone J 8:703–710

    Article  CAS  Google Scholar 

  • Mandelbaum RT, Allan DL, Wackett LP (1995) Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61:1451–1457

    PubMed  CAS  Google Scholar 

  • Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697

    Article  PubMed  CAS  Google Scholar 

  • Martin-Laurent F, Cornet L, Ranjard L, Lopez-Gutierrez J-C, Philippot L, Schwartz C, Chaussod R, Catroux G, Soulas G (2004) Estimation of atrazine-degrading genetic potential and activity in three French agricultural soils. FEMS Microbiol Ecol 48:425–435

    Article  PubMed  CAS  Google Scholar 

  • McDaniel CS, Harper LL, Wild JR (1988) Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase. J Bacteriol 170:2306–2311

    PubMed  CAS  Google Scholar 

  • Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington

    Google Scholar 

  • Monard C, Martin-Laurent F, Vecchiato C, Francez A-J, Vandenkoornhuyse P, Binet F (2008) Combined effect of bioaugmentation and bioturbation on atrazine degradation in soil. Soil Biol Biochem 40:2253–2259

    Article  CAS  Google Scholar 

  • Monard C, Martin-Laurent F, Devers-Lamrani M, Lima O, Vandenkoornhuyse P, Binet F (2010) atz gene expressions during atrazine degradation in the soil drilosphere. Mol Ecol 19:749–759

    Article  PubMed  CAS  Google Scholar 

  • Monard C, Vandenkoornhuyse P, Le Bot B, Binet F (2011) Relationship between bacterial diversity and function under biotic control: the soil pesticide degraders as a case study. ISME J 5:1048–1056

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Ogunseitan OA, Yang S, Ericson J (2000) Microbial delta-aminolevulinate dehydratase as a biosensor of lead bioavailability in contaminated environments. Soil Biol Biochem 32:1899–1906

    Article  CAS  Google Scholar 

  • Parekh NR, Hartmann A, Charnay M-P, Fournier J-C (1995) Diversity of carbofuran-degrading soil bacteria and detection of plasmid-encoded sequences homologous to the mcd gene. FEMS Microbiol Ecol 17:149–160

    Article  CAS  Google Scholar 

  • Park JW, Crowley DE (2006) Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH-contaminated soils. Appl Microbiol Biot 72:1322–1329

    Article  CAS  Google Scholar 

  • Peng JJ, Cai C, Qiao M, Li H, Zhu YG (2010) Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils. Environ Pollut 158:2872–2879

    Article  PubMed  CAS  Google Scholar 

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini M, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45:219–235

    Article  CAS  Google Scholar 

  • Prosser JI (2002) Molecular and functional diversity in soil micro-organisms. Plant Soil 244:9–17

    Article  CAS  Google Scholar 

  • Purdy KJ, Jared RL (2005) Nucleic acid recovery from complex environmental samples. In: Methods in enzymology, Academic Press, Burlington, pp 271–292

  • Radosevich M, Traina SJ, Hao YL, Tuovinen OH (1995) Degradation and mineralization of atrazine by a soil bacterial isolate. Appl Environ Microb 61:297–302

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. Cold Spring Harbor Laboratory Press, New York

  • Sherchan SP, Bachoon DS (2011) The presence of atrazine and atrazine-degrading bacteria in the residential, cattle farming, forested and golf course regions of Lake Oconee. J Appl Microbiol 111:293–299

    Article  PubMed  CAS  Google Scholar 

  • Soulas G (1993) Evidence for the existence of different physiological groups in the microbial community responsible for 2,4-D mineralization in soil. Soil Biol Biochem 25:443–449

    Article  CAS  Google Scholar 

  • Spain JC, Pritchard PH, Bourquin AW (1980) Effects of adaptation on biodegradation rates in sediment/water cores from estuarine and freshwater environments. Appl Environ Microb 40:726–734

    CAS  Google Scholar 

  • Thompson BM, Lin CH, Hsieh HY, Kremer RJ, Lerch RN, Garrett HE (2010) Evaluation of PCR-based quantification techniques to estimate the abundance of atrazine chlorohydrolase gene atzA in rhizosphere soils. J Environ Qual 39:1999–2005

    Article  PubMed  CAS  Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotech 14:262–269

    Article  PubMed  CAS  Google Scholar 

  • Topp E (2003) Bacteria in agricultural soils: diversity, role and future perspectives. Can J Soil Sci 83:303–309

    Article  CAS  Google Scholar 

  • Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JAW (2001) Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA. Appl Environ Microb 67:2270–2275

    Article  CAS  Google Scholar 

  • Udiković-Kolić N, Devers-Lamrani M, Petrić I, Hršak D, Martin-Laurent F (2011) Evidence for taxonomic and functional drift of an atrazine-degrading culture in response to high atrazine input. Appl Microbiol Biot 90:1547–1554

    Article  Google Scholar 

  • Wagner R (1994) The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch Microbiol 161:100–109

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Adrian L, Kleinsteuber S, Andreesen JR, Lechner U (2009) Transcription analysis of genes encoding homologues of reductive dehalogenases in “Dehalococcoides” sp. strain CBDB1 by using terminal restriction fragment length polymorphism and quantitative PCR. Appl Environ Microb 75:1876–1884

    Article  CAS  Google Scholar 

  • White DC, Flemming CA, Leung KT, Macnaughton SJ (1998) In situ microbial ecology for quantitative appraisal, monitoring, and risk assessment of pollution remediation in soils, the subsurface, the rhizosphere and in biofilms. J Microbiol Meth 32:93–105

    Article  CAS  Google Scholar 

  • Xia T, Baumgartner JC, David LL (2000) Isolation and identification of Prevotella tannerae from endodontic infections. Oral Microbiol Immunol 15:273–275

    Article  PubMed  CAS  Google Scholar 

  • Younes M, Galal-Gorchev H (2000) Pesticides in drinking water: a case study. Food Chem Toxicol 38:S87–S90

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the INSU-CNRS EC2CO program and by a grant from the council of ‘Région Bretagne’ to C. Monard and F. Binet. F. Martin-Laurent and Marion Devers-Lamrani were supported by an ONEMA grant entitled ‘Amélioration de l’efficacité des zones tampons pour les pesticides et influence de la biodégradation naturelle’. We thank Dr N. Samils for editing the English writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cécile Monard or Françoise Binet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monard, C., Martin-Laurent, F., Lima, O. et al. Estimating the biodegradation of pesticide in soils by monitoring pesticide-degrading gene expression. Biodegradation 24, 203–213 (2013). https://doi.org/10.1007/s10532-012-9574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9574-5

Keywords

Navigation