Skip to main content
Log in

Evaluation of different lignocellulosic substrates for the production of cellulases and xylanases by the basidiomycete fungi Bjerkandera adusta and Pycnoporus sanguineus

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Agricultural waste products are potential resources for the production of a number of industrial compounds, including biofuels. Basidiomycete fungi display a battery of hydrolytic enzymes with prospective use in lignocellulosic biomass transformation, however little work has been done regarding the characterization of such activities. Growth in several lignocellulosic substrates (oak and cedar sawdust, rice husk, corn stubble, wheat straw and Jatropha seed husk) and the production of cellulases and xylanases by two basidiomycete fungi: Bjerkandera adusta and Pycnoporus sanguineus were analyzed. Growth for P. sanguineus was best in rice husk while corn stubble supported the highest growth rate for B. adusta. Among the substrates tested, cedar sawdust produced the highest cellulolytic activities in both fungal species, followed by oak sawdust and wheat straw. Xylanolytic activity was best in oak and cedar sawdust for both species. We found no correlation between growth and enzyme production. Zymogram analysis of xylanases and cellulases showed that growth in different substrates produced particular combinations of protein bands with hydrolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alborés S, Pianzzola MJ, Soubes M, Cerdeiras M (2006) Biodegradation of agroindustrial wastes by Pleurotus spp for its use as ruminant feed. Electron J Biotechnol 9:215–220

    Article  Google Scholar 

  • Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  PubMed  CAS  Google Scholar 

  • Betts WB, Dart RK, Ball AS, Pedlar SL (1991) Biosynthesis and structure of lignocellulose. In: Betts WB (ed) Biodegradation: natural and synthetic materials. Springer-Verlag, Berlin, pp 139–155

    Google Scholar 

  • Bhattacharjee B, Roy A, Majumder AL (1993) Carboxymethylcellulase from Lenzites saepiaria, a brown-rotter. Biochem Mol Biol Int 30:1143–1152

    PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  PubMed  CAS  Google Scholar 

  • Dantan-Gonzalez E, Martinez-Anaya C, Mendez-Sanchez M, Gonzalez MC, Palomares LA, Folch-Mallol J (2008) Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat. Int Microbiol 11:163–169

    PubMed  CAS  Google Scholar 

  • Elisashvili V, Kachlishvili E (2009) Physiological regulation of laccase and manganese peroxidase production by white-rot basidiomycetes. J Biotechnol 144:37–42

    Article  PubMed  CAS  Google Scholar 

  • Department of energy, USA. http://www.energy.gov

  • Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  PubMed  CAS  Google Scholar 

  • Inglis GD, Popp AP, Selinger LB, Kawchuk LM, Gaudet DA, McAllister TA (2000) Production of cellulases and xylanases by low-temperature basidiomycetes. Can J Microbiol 46:860–865

    Article  PubMed  CAS  Google Scholar 

  • Lee YE, Lowe SE, Zeikus JG (1993) Regulation and characterization of xylanolytic enzymes of Thermoanaerobacterium saccharolyticum B6A-RI. Appl Environ Microbiol 59:763–771

    PubMed  CAS  Google Scholar 

  • Liang Y, Siddaramu T, Yesuf J, Sarkany N (2010) Fermentable sugar release from Jatropha seed cakes following lime pretreatment and enzymatic hydrolysis. Bioresour Technol 101:6417–6424

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F, Martinez MJ, Gutierrez A, del Rio JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  CAS  Google Scholar 

  • Mateos PF, Jimenez-Zurdo JI, Chen J, Squartini AS, Haack SK, Martinez-Molina E, Hubbell DH, Dazzo FB (1992) Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 58:1816–1822

    PubMed  CAS  Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 292–324

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Nagle NJ, Elander RT, Newman MM, Rohrback BT, Ruiz RO, Torget RW (2002) Efficacy of a hot washing process for pretreated yellow poplar to enhance bioethanol production. Biotechnol Prog 18:734–738

    Article  PubMed  CAS  Google Scholar 

  • Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86:561–576

    Article  PubMed  Google Scholar 

  • Olofsson K, Bertilsson M, Liden G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7

    Article  PubMed  Google Scholar 

  • Perez J, Muñoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  PubMed  CAS  Google Scholar 

  • Quiroz-Castañeda RE, Balcázar-López E, Dantán-González E, Martinez A, Folch-Mallol JL, Martínez-Anaya C (2009) Characterization of cellulolytic activities of Bjerkandera adusta and Pycnoporus sanguineus on solid wheat straw medium. Electron J Biotechnol 12:1–8

    Google Scholar 

  • Sadana J, Lachkea H, Patilr V (1984) Endo-(1,4)-glucanase from Scleroriuni rolfsii. Purification, substrate specificity and mode of action. Carbohydr Res 133:297–312

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom J, Pilcher L, Galbe M, Zacchi G (2002) Two-step steam pretreatment of softwood with SO2 impregnation for ethanol production. Appl Biochem Biotechnol 98–100:5–21

    Article  PubMed  Google Scholar 

  • Sommer P, Georgieva T, Ahring BK (2004) Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans 32:283–289

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Vazquez-Duhalt R, Pickard MA (2003) Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Can J Microbiol 49:675–682

    Article  PubMed  CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Jorge Martínez Herrera for providing Jatropha curcas seed husk. We are indebted with Chris Wood for his critical reading of this manuscript. This work was funded by CONACyT grant 48256Z and grant 13/2007 from UAM-Cuajimalpa. R.E. Q.-C. received a CONACyT scholarship (no. 47895) and N. P.-M. a CONACyT-FOMIX 93760 scholarship. CONACyT also provided a postdoctoral fellowship to C. M-A (Exp. no. 050272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Folch-Mallol.

Additional information

Rosa Estela Quiroz-Castañeda, Nancy Pérez-Mejía are the authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quiroz-Castañeda, R.E., Pérez-Mejía, N., Martínez-Anaya, C. et al. Evaluation of different lignocellulosic substrates for the production of cellulases and xylanases by the basidiomycete fungi Bjerkandera adusta and Pycnoporus sanguineus . Biodegradation 22, 565–572 (2011). https://doi.org/10.1007/s10532-010-9428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9428-y

Keywords

Navigation