Skip to main content
Log in

Prospects for the use of new basidiomycete strains for the direct conversion of lignocellulose into ethanol

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Sixty-six isolates of basidiomycete fungi were screened for the ability to synthesize cellulase. The effect of temperature on cellulase activity was studied for eight basidiomycete strains as perspective producers of ethanol. The temperature optima of enzyme activity ranged between 26 and 32°C. Direct conversion of Na-carboxymethyl cellulose, microcrystalline cellulose and rye straw were studied for seven basidiomycetes strains: Fomitopsis pinicola MT-5.09, F. pinicola MT-5.21, Piptoporus betulinus MT-30.04, Fomes fomentarius MT-4.05, F. fomentarius MT-4.23, Trametes hirsuta MT-24.24, Flammulina velutipes MT-3.03 Maximum ethanol production from Na-carboxymethyl cellulose (1.3 g/dm3) was achieved by strain F. velutipes MT-3.03. Strain F. fomentarius MT-4.05 more effectively converted rye straw to ethanol with yield of 1.1 g/dm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamelinck, C.N., Van Hooijdonk, G., and Faai., A.P.C., Biomass Bioenergy, 2005, vol. 28, no. 4, pp. 384–410.

    Article  CAS  Google Scholar 

  2. Balat, M., Balat, H., and Oz, C., Progr. Energy Combust. Sci., 2008, vol. 34, no. 5, pp. 551–573.

    Article  CAS  Google Scholar 

  3. Galbe, M. and Zacchi, G., Adv. Biochem. Engin./Biotechnol., Berli., Heidelberg: Springer-Verlag, 2007, vol. 108, pp. 41–65.

    CAS  Google Scholar 

  4. Jin, M.J., Gunawan, C., Balan, V., and Dale, B.E., Biotechnol. Bioeng., 2012, vol. 109, pp. 1929–1936.

    Article  CAS  PubMed  Google Scholar 

  5. Jin, M., Balan, V., Gunawan, C., and Dale, B.E., Biotechnol. Bioeng., 2011, vol. 108, no. 6, pp. 1290–1297.

    Article  CAS  PubMed  Google Scholar 

  6. Buruiana, C.T., et al., Annals of the University Dunarea de Jos of Galati, Fascicle VI: Food Technology, 2013, vol. 37, no. 1, pp. 25–38.

    CAS  Google Scholar 

  7. Tomas-Pejo, E., Oliva, J.M., Ballesteros, M., and Olsson, L., Biotechnol. Bioeng., 2008, vol. 100, pp. 1122–1131.

    Article  CAS  PubMed  Google Scholar 

  8. Gan, Q., Allen, S.J., and Taylor, G., Process Biochem., 2003, vol. 38, pp. 1003–1018.

    Article  CAS  Google Scholar 

  9. Lynd, L.R., Ann. Rev. Environ. Res., 1996, vol. 21, pp. 403–465.

    Google Scholar 

  10. Spatari, S., Bagley, D., and Maclean, H., Biores. Technol., 2010, vol. 101, pp. 654–667.

    Article  CAS  Google Scholar 

  11. Xu, Q., Singh, A., and Himmel, E., Curr. Opin. Biotechnol., 2009, vol. 20, pp. 364–371.

    Article  CAS  PubMed  Google Scholar 

  12. Lin, Y. and Tanaka, S., Appl. Microbiol. Biotechnol., 2006, vol. 69, pp. 627–642.

    Article  CAS  PubMed  Google Scholar 

  13. Srivastava, A.K. and Agrawal, P., J. Atoms Molecules, 2012, vol. 2, no. 4, pp. P. 321–331.

    CAS  Google Scholar 

  14. Mizuno, R., Ichinose, H., Maehara, T., Takabatake, K., and Kaneko, S., Biosci. Biotechnol. Biochem., 2009, vol. 73, no. 10, pp. 1671–1673.

    Article  CAS  PubMed  Google Scholar 

  15. Okamoto, K., Uchii, A., Yanase, H., and Yanase, H., Springer Plus, 2014, vol. 3, p. 121. doi 10.1186/2193-1801-3-121

    Article  PubMed  PubMed Central  Google Scholar 

  16. Okamoto, K., Imashiro, K., Akizawa, Y., Onimura, A., Yoneda, M., Nitta, Y., Maekava, N., and Yanase, H., Biotech. Lett., 2010, vol. 32, no. 7, pp. 909–913.

    Article  CAS  Google Scholar 

  17. Okamoto, K., Nitta, Y., Maekawa, N., and Yanase, H., Enzyme Microb. Technol., 2011, vol. 48, no. 3, pp. 273–277.

    Article  CAS  PubMed  Google Scholar 

  18. Maehara, T., Ichinose, H., Furukawa, T., Ogasawara, W., Takabatake, K., and Kaneko, S., Fungal Biol., 2013, vol. 117, pp. 220–226.

    Article  CAS  PubMed  Google Scholar 

  19. Avtonomova, A.V., Leont’eva, M.I., Isakova, E.B., Belitskii, I.V., Usov, A.I., Bukhman, V.M., Lapin, A.A., and Krasnopol’skaya, L.M., Biotekhnologiya, 2008, no. 2, pp. 23–29.

    Google Scholar 

  20. Kasana, R.C., Salwan, R., Dhar, H., Dutt, S., and Gulati, A., Curr. Microbiol., 2008, vol. 57, pp. 503–507.

    Article  CAS  PubMed  Google Scholar 

  21. Bradner, J.R., Gillings, M., and Nevalainen, K.M.H., J. Microbiol. Biotechnol., 1999, vol. 15, pp. 131–132.

    Article  Google Scholar 

  22. Miller, G.L., Anal. Chem., 1959, vol. 31, no. 3, pp. 426–428.

    Article  CAS  Google Scholar 

  23. Jagtap, S.S., Dhiman, S.S., Kim, T.S., Li, J., Lee, J.K., and Kang, Y.C., Biores. Technol., 2013, vol. 133, pp. 307–314.

    Article  CAS  Google Scholar 

  24. Kozhevnikova, E.Yu., Beskorovainaya, D.A., Novikov, A.A., Shnyreva, A.V., Barkov, A.V., and Vinokurov, V.A., Appl. Biochem. Microbiol., 2016, vol. 52, no. 6, pp. 638–642.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Novikov.

Additional information

Original Russian Text © E.Yu. Kozhevnikova, D.A. Petrova, A.A. Novikov, A.V. Shnyreva, A.V. Barkov, V.A. Vinokurov, 2017, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2017, Vol. 53, No. 5, pp. 484–489.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhevnikova, E.Y., Petrova, D.A., Novikov, A.A. et al. Prospects for the use of new basidiomycete strains for the direct conversion of lignocellulose into ethanol. Appl Biochem Microbiol 53, 557–561 (2017). https://doi.org/10.1134/S0003683817050106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817050106

Keywords

Navigation