Skip to main content

Advertisement

Log in

Reductive degradation of pyrazine-2-carboxylate by a newly isolated Stenotrophomonas sp. HCU1

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A bacterium growing on pyrazine-2-carboxylate broth was isolated, purified and identified as a strain of Stenotrophomonas sp. based on polyphasic taxonomic analyses and designated as strain HCU1. 16S rRNA gene sequence of strain HCU1 showed 98.7% sequence similarity with the type strain of Stenotrophomonas maltophilia belonging to Gammaproteobacteria. Growth of strain HCU1 was demonstrated when pyrazine-2-carboxylate was used as a sole source of nitrogen. Ring reduction of pyrazine-2-carboxylate was shown as increase in absorbance at 268 nm and the reduced product was confirmed as 1,2,5,6-tetrahydropyrazine-2-carboxylate, while a ring opened product, 2-amino-2-hydroxy-3-(methylamino) propanoic acid (with a loss in carbon atom), indicated a reductive degradation of pyrazine-2-carboxylate by strain HCU1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altenschmidt U, Bokranz M, Fuchs G (1992) Novel aerobic 2-aminobenzoate metabolism. Eur J Biochem 207:715–722

    Article  CAS  PubMed  Google Scholar 

  • Anil Kumar P, Aparna P, Srinivas TNR, Sasikala Ch, Ramana ChV (2008) Rhodovulum kholense sp. nov. Int J Syst Evol Microbiol 58:1723–1726

    Article  PubMed  Google Scholar 

  • Biebl H, Pfennig N (1981) Isolation of members of the family Rhodospirilllaceae. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The Prokaryotes. Springer Verlag, NY, pp 167–273

    Google Scholar 

  • Brown DJ (2002) The pyrazines supplement I. Wiley, New York

    Book  Google Scholar 

  • Carmona M, Zamarro MT, Blàzquez B, Durante-Rodríguez G, Juàrez JF, Valderrama JA, Bàrragan MJL, García JL, Díaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73:71–133

    Article  CAS  PubMed  Google Scholar 

  • Chia AS-C, Trimble RF Jr (1971) Acid-Base properties of some pyrazines. J Phys Chem 65:863–866

    Article  Google Scholar 

  • Cristofanilli M (2005) Bortezomib in metastatic breast cancer pharocodynamics, biological effects and prediction of clinical benefits. Ann Oncol 17:813–817

    Google Scholar 

  • Ebert S, Rieger P-G, Knackmuss H-J (1999) Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dintrophenol by Nocardiodes simplex FJ2–1A. J Bacteriol 181:2669–2674

    CAS  PubMed  Google Scholar 

  • Edmondson SD, Fisher MH, Kim D, Macoss M, Parmee ER, Weber AE, Xu J (2006) β-aminotetrahydroimidazo (1,2-a) pyrazines and tetrahydrotrioazolopyrazines as dipeptidylpeptidase inhibitors for the treatment or prevention of diabetes. United States Patent-7125873

  • French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64:2864–2868

    CAS  PubMed  Google Scholar 

  • Hartman GD, Hartman RD, Schwering JE, Jones NR, Wardman P, Wats ME, Woodcock M (1984) Synthesis and activity of novel nitropyrazines for use as hypoxic cell radiosensitizers. J Med Chem 27:1634–1639

    Article  CAS  PubMed  Google Scholar 

  • Jeús M-TJ, Armida Z-E, Manuel G-L, Martín T-VJ (2007) The antibacterial metabolites and proacacipetalin from Acacia cochliacanthan. J Mex Chem Soc 51:228–231

    Google Scholar 

  • Kiener A (1992) Enzymatic oxidation of methyl groups on aromatic heterocycles: a versatile method for the preparation of heteroaromatic carboxylic acids. Angew Int Ed Engl 31:774–775

    Article  Google Scholar 

  • Kiener A, Roduit JP, Tschech A, Tinschert A, Heinzmann K (1994) Regiospecific enzymatic hydroxylations of pyrazinecarboxylic acid and practical synthesis of 5-chloropyrazine-2-carboxylic acid. Synlett 10:814–816

    Article  Google Scholar 

  • Kurniadi T, Belrhild R, Berger RF, Juillerat MA, Fay LB (2003) Preparation of pyrazines. EU patent 1357193

  • Laemmeli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophageT4. Nature 227:680–685

    Article  Google Scholar 

  • Lee JJ, Rhee S-K, Lee S-T (2001) Degradation of 3-methylpyridine and 4-ethylpyridine by Gordonia nitida LE31. Appl Environ Microbiol 67:4342–4345

    Article  CAS  PubMed  Google Scholar 

  • Maga JA, Sizer CE (1973) Pyrazines in foods. A review. J Agr Food Chem 21:22–30

    Article  CAS  Google Scholar 

  • Mattey M, Harle EM (1976) Aerobic metabolism of pyrazine compounds by a Pseudomonas species. Biochem Soc Trans 4:492–494

    CAS  PubMed  Google Scholar 

  • Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66:2743–2747

    Article  CAS  PubMed  Google Scholar 

  • Moser BR (2008) Review of cytotoxic cephalostatins and ritterazines: isolation and synthesis. J Nat Prod Rep 71:487–489

    Article  CAS  Google Scholar 

  • Mouttaki H, Nanny MA, Mclnerney MJ (2008) Use of benzoate as an electron acceptor by Syntrophus aciditrophicus grown in pure culture with crotate. Environ Microbiol 10:3265–3274

    Article  CAS  PubMed  Google Scholar 

  • Muller R, Rappert S (2010) Pyrazines: occurrence, formation and biodegradation. Appl Microbiol Biotechnol 85:1315–1320

    Article  PubMed  Google Scholar 

  • Nishimura A, Yoshizako F, Chubachi M (1997) Purification and characterization of an enzyme that catalyzes ring cleavage of Aspergillic acid from Trichoderma koningii ATCC 76666. Biosci Biotech Biochem 61:1527–1530

    Article  CAS  Google Scholar 

  • Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750

    Article  CAS  PubMed  Google Scholar 

  • Piez KA, Irreverre F, Wolff HF (1956) The separation and determination of cyclic imino acids. J Biol Chem 246:2758–2864

    Google Scholar 

  • Prochaska HJ, Yeh Y, Baron P, Polsky B (1993) Oltipraz-an inhibitor of HIV type 1 replication. Proc Nat Acad Sci 90:3953–3957

    Article  CAS  PubMed  Google Scholar 

  • Rappert S, Botsch KC, Nagorny S, Francke W, Muller R (2006) Degradation of 2,3-diethyl-5-methylpyrazine by a newly discovered bacterium, Mycobacterium sp. Strain DM-11. Appl Environ Microbiol 72:1437–1444

    Article  CAS  PubMed  Google Scholar 

  • Rappert S, Li R, Kokova M, Antholz M, Nagorny S, Francke W, Muller R (2007) Degradation of 2,5-dimethylpyrazine by Rhodococcus erythropolis strain DP-45 isolated from a waste gas treatment plant of a fishmeal processing company. Biodegradation 18:585–596

    Article  CAS  PubMed  Google Scholar 

  • Rhee K, Lee GM, Yoon JH, Park YH, Bae HS, Lee ST (1997) Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium. Appl Environ Microbiol 63:2578–2585

    CAS  PubMed  Google Scholar 

  • Robert J, Chorvat J, Kurt JR (1988) Synthesis of 4-Aryl-3,5-bis(alkoxycarbonyl)l,-4–dihydropyrazines. J Org Chem 53:5779–5781

    Article  Google Scholar 

  • Sasikala C, Ramana CV, Raghuveer Rao P (1994) Photometabolism of heterocyclic aromatic compounds by Rhodopseudomonas palustris OU11. Appl Environ Microbiol 60:2187–2190

    CAS  PubMed  Google Scholar 

  • Schulz S, Fulhendorff J, Reichenbach H (2004) Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus. Tetrahedron 60:3863–3872

    Article  CAS  Google Scholar 

  • Shulpin GB, Druzhinina AN, Nizova GV (1993) Oxidation with the H2O2-VO3-pyrazine-2-carboxylic acid reagent 2. Oxidation of alcohols and aromatic hydrocarbons. Russ Chem Bull 42:1394–1396

    Google Scholar 

  • Tamir H, Gilvarg C (1974) Dihydropicolinic acid reductase. J Biol Chem 249:3034–3040

    CAS  PubMed  Google Scholar 

  • Tinschert A, Kiener A, Heinzmann K, Tschech A (2000) Novel regioselective hydroxylations of pyridine carboxylic acids at position C2 and pyrazine carboxylic acids at position C3. Appl Microbiol Biotechnol 53:185–195

    Article  CAS  PubMed  Google Scholar 

  • Vasundhara TS, Parihar DB (2006) Studies in pyrazines formed in roasted spices; Coriandrum sativum, Cuminum cyminum and Trigonella foenum-graecum. Food 24:645–651

    Google Scholar 

  • Weiser M, Heinzmann K, Keiner A (1997) Bioconversion of 2-cyanopyrazine to 5-hydroxypyrazine-2-carboxylic acid with Agrobacterium sp. DSM6336. Appl Microbiol Biotechnol 48:174–176

    Article  Google Scholar 

  • Woolfson A, Rothschild M (1990) Speculating about pyrazines. Proc R Soc Lon B 242:113–119

    Article  CAS  Google Scholar 

  • Yu MH, Lee SJ (2001) NAD+ reduction by ferrocyanide on the surface of bovine hart mitochondrion. Bull Kor Chem Soc 1:13–14

    Google Scholar 

  • Zhang Y, Mitchison D (2003) The curious characteristics of pyrazine-amide: a review. Int J Lung Dis 7:6–21

    CAS  Google Scholar 

Download references

Acknowledgments

The infrastructural support provided by UGC-SAP and DST-FIST is acknowledged. KSR thank the UGC for UGC-SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. V. Ramana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10532_2010_9345_MOESM1_ESM.pdf

Supplementary Fig 1: 1H (A) and 13C (B) NMR spectrum of the metabolite A1. Supplementary Fig 2: 1H (A), amplified 1H (B) and 13C NMR spectrum of metabolite B1. (PDF 436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajini, K.S., Sasikala, C. & Ramana, C.V. Reductive degradation of pyrazine-2-carboxylate by a newly isolated Stenotrophomonas sp. HCU1. Biodegradation 21, 801–813 (2010). https://doi.org/10.1007/s10532-010-9345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9345-0

Keywords

Navigation