Skip to main content
Log in

Thauera sinica sp. nov., a phenol derivative-degrading bacterium isolated from activated sludge

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A bacterial strain, K11T, capable of degrading phenol derivatives was isolated from activated sludge of a sewage treatment plant in China. This strain, which can degrade more than ten phenol derivatives, was identified as a Gram-stain negative, rod-shaped, asporogenous, facultative anaerobic bacterium with a polar flagellum. The strain was found to grow in tryptic soy broth in the presence of 0–2.5% (w/v) NaCl (optimum 0–1%), at 4–43 °C (optimum 30–35 °C) and pH 4.5–10.5 (optimum 7.5–8). Comparative analysis of nearly full-length 16S rRNA gene sequences showed that this strain belongs to the genus Thauera. The 16S rRNA gene sequence was found to show high similarity (97.5%) to that of Thauera chlorobenzoica 3CB-1T, with lesser similarity to other recognised Thauera strains. The G+C content of the DNA of the strain was determined to be 67.8 mol%. The DNA–DNA hybridization value between K11T and Thauera aromatica DSM6984T was 10.4 ± 4.5%. The genomic OrthoANI values of K11T with the other nine type strains of genus Thauera were less than 81.1%. Chemotaxonomic analysis of strain K11T revealed that Q-8 is the predominant quinone; the polar lipids contain phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and five uncharacterised lipids; the major cellular fatty acid was identified as summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH; 45.9%), followed by C16:0 (20.5%) and C18:1 ω7c (15.8%). Based on the phenotypic and phylogenetic evidence, DNA–DNA hybridisation, OrthoANI, chemotaxonomic analysis and results of the physiological and biochemical tests, a new species named Thauera sinica sp. nov. is proposed with strain K11T (= CGMCC 1.15731T = KACC 19216T) designated as the type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aggelis G, Iconomou D, Christou M, Bokas D, Kotzailias S, Christou G, Tsagou V, Papanikolaou S (2003) Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process. Water Res 37:3897–3904

    Article  CAS  PubMed  Google Scholar 

  • Allen MS, Welch KT, Prebyl BS, Baker DC, Meyers AJ, Sayler GS (2004) Analysis and glycosyl composition of the exopolysaccharide isolated from the floc-forming wastewater bacterium Thauera sp. MZ1T. Environ Microbiol 6:780–790

    Article  CAS  PubMed  Google Scholar 

  • Breinig S, Schiltz E, Fuchs G (2000) Genes involved in anaerobic metabolism of phenol in the bacterium Thauera aromatica. J Bacteriol 182:5849–5863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler CS, Debieux CM, Dridge EJ, Splatt P, Wright M (2012) Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem Soc Trans 40:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Capasso R, Evidente A, Schivo L, Orru G, Marcialis MA, Cristinzio G (1995) Antibacterial polyphenols from olive oil mill waste waters. J Appl Microbiol 79:393–398

    CAS  Google Scholar 

  • Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Evol Microbiol 45:240–245

    CAS  Google Scholar 

  • Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64:316

    Article  PubMed  Google Scholar 

  • Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Microbiol 48:459–470

    CAS  Google Scholar 

  • Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Scientific Press, Peking, pp 353–412

    Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 39:224–229

    Google Scholar 

  • Fan S, Dong Y, Xiaorong XU, Wang H, Ren B (2011) Phenolic wastewater treatment free of phenol and formaldehyde. Chem Ind Eng Prog 30:340–343

    CAS  Google Scholar 

  • Farmer JJ, Janda JM, Brenner FW, Cameron DN, Birkhead KM (2005) Genus I. Vibrio Pacini 1854, 411AL366. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. The Proteobacteria, Part B, the Gammaproteobacteria. Springe, New York, pp 494–546

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: ninimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Wiley, New York, pp 115–175

    Google Scholar 

  • Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E, Sly LI (1993) Thauera selenatis gen. nov., sp. nov., a subclass of proteobacteria with a anaerobic respiration member of the beta novel type of anaerobic respiration. Int J Syst Evol Bacteriol 43:135–142

    Article  CAS  Google Scholar 

  • Mao Y, Xia Y, Zhang T (2013) Characterization of Thauera dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing. Bioresour Technol 128:703–710

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Xia Y, Wang Z, Zhang T (2014) Reconstructing a Thauera genome from a hydrogenotrophic-denitrifying consortium using metagenomic sequence data. Appl Microbiol Biotechnol 98:6885–6895

    Article  CAS  PubMed  Google Scholar 

  • Marmulla R, Cala EP, Markert S, Schweder T, Harder J (2016) The anaerobic linalool metabolism in Thauera linaloolentis 47 Lol. BMC Microbiol 16:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for thce extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Rong X, Huang Y (2010) Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA-DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 60:696–703

    Article  CAS  PubMed  Google Scholar 

  • Rosselló-móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Syst Appl Microbiol 40:121–122

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406

    CAS  PubMed  Google Scholar 

  • Sasser M (2001) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc, Newark

    Google Scholar 

  • Scholten E, Lukow T, Auling G, Kroppenstedt RM, Rainey FA, Diekmann H (1999) Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Evol Microbiol 49:1045–1051

    CAS  Google Scholar 

  • Shinoda Y, Sakai Y, Uenishi H, Uchihashi Y, Hiraishi A, Yukawa H, Yurimoto H, Kato N (2004) Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. Strain DNT-1. Appl Environ Microbiol 70:1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–655

    Google Scholar 

  • Song B, Palleroni NJ, Kerkhof LJ, Häggblom MM (2001) Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 51:589–602

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849

    Article  CAS  Google Scholar 

  • Tindall BJ (1990a) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

    Article  CAS  Google Scholar 

  • Tindall BJ (1990b) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR et al (1987) Report of the ad hoc vommittee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464

    Article  Google Scholar 

  • West M, Burdash NM, Freimuth F (1977) Simplified silver-plating stain for flagella. J Clin Microbiol 6:414–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xi L, Qiao N, Zhang Z, Yan L, Li F, Hu J, Li J (2016a) Sinorhodobacter hungdaonensis sp. nov. isolated from activated sludge collected from a municipal wastewater treatment plant. Antonie Van Leeuwenhoek 110:27–32

    Article  PubMed  Google Scholar 

  • Xi L, Zhang Z, Qiao N, Zhang Y, Li J, Zhao J-Y, Xiao Z (2016b) Complete genome sequence of the novel thermophilic polyhydroxyalkanoates producer Aneurinibacillus sp. XH2 isolated from Gudao oilfield in China. J Biotechnol 227:54–55

    Article  CAS  PubMed  Google Scholar 

  • Xiao ZJ, Huo FF, Qi RQ, Huang YL (2011) Optimization of phenol biodegradation by a novel 2,3-dimethylphenol-degrading pseudomonas isolate. Adv Mater Res 44:356–360

    Google Scholar 

  • Yang G-Q, Zhang J, Kwon S-W, Zhou S-G, Han L-C, Chen M, Ma C, Zhuang L (2013) Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63:873–878

    Article  CAS  PubMed  Google Scholar 

  • Yin YJ, Wang YN, Tang W, Song LY (2017) Thauera phenolivorans sp. nov., a phenol degrading bacterium isolated from activated sludge. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-017-0918-3

    Google Scholar 

  • Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. https://doi.org/10.1099/ijsem.0.001755

    Google Scholar 

Download references

Acknowledgements

This research is funded by the National Natural Science Foundation of China (No. 31400005 and No. 21473256) and the Fundamental Research Funds for the Central Universities of China and the Key Research Project of Shandong Province (No. 2017GGX40114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Xi or Jianguo Liu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, N., Xi, L., Zhang, J. et al. Thauera sinica sp. nov., a phenol derivative-degrading bacterium isolated from activated sludge. Antonie van Leeuwenhoek 111, 945–954 (2018). https://doi.org/10.1007/s10482-017-0993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0993-5

Keywords

Navigation