Skip to main content
Log in

Pyrazines: occurrence, formation and biodegradation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pyrazines are a class of compounds that occur almost ubiquitously in nature. Pyrazines can be synthesised chemically or biologically, and are used as flavouring additives. The major formation of pyrazines occurs during heating of food. There is very little information available on the degradation of these compounds. In humans and animals, pyrazines are excreted as glucuronates or bound to glutathione via the kidney after hydroxylation, but the pyrazine ring is not cleaved. Bacteria have been isolated, which are able to use various substituted pyrazines as a sole carbon and energy source. In a few cases, the initial metabolites have been characterised; however, the mechanism of ring cleavage and the further degradation pathways are still unknown and await further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams TB, Doull J, Feron VJ, Goodman JI, Marnett LJ, Munro IC, Newberne PM, Portoghese PS, Smith RL, Waddell WJ, Wagner BM (2002) The FEMA GRAS assessment of pyrazine derivatives used as flavor ingredients. Food Chem Toxicol 40:429–451

    Article  CAS  Google Scholar 

  • Akiyama T, Enomoto Y, Shibamoto T (1978) A new method of pyrazine synthesis for flavor use. J Agric Food Chem 26:1176–1179

    Article  CAS  Google Scholar 

  • Allen MS, Lacey MJ, Boyd SJ (1995) Methoxypyrazines in red wine: occurrence of 2-methoxy-3-(1-methylethyl)pyrazine. J Agric Food Chem 43:769–772

    Article  CAS  Google Scholar 

  • Amrani-Hemaimi M, Cerny C, Fay LB (1995) Mechanisms of formation of alkylpyrazines in the Maillard reaction. J Agric Food Chem 43:2818–2822

    Article  CAS  Google Scholar 

  • Barnea A, Gvaryahu G, Rothschilds M (1999) The effect of the odour of pyrazine and colours on recall of past events and learning in domestic chicks (Gallus gallus domesticus). In: Van Enden H (ed) Insects and birds. Chapman and Hall, London, pp 205–216

    Google Scholar 

  • Barnea A (2002) The odour of pyrazine increases the egg mass of domestic chickens (Gallus gallus domesticus L.). J Zool 257:411–416

    Article  Google Scholar 

  • Bauer I, Max N, Fetzner S, Lingens F (1996) 2, 4-Dioxygenases catalyzing N-heterocyclic-ring cleavage and formation of carbon monoxide. Purification and some properties of 1H-3-hydroxy-4-oxoquinaldine 2, 4-dioxygenase from Arthrobacter sp. Rü61a and comparison with 1H-3-hydroxy-4-oxoquinoline 2, 4-dioxygenase from Pseudomonas putida 33/1. Eur J Biochem 240:576–583

    Article  CAS  Google Scholar 

  • Bazemore R, Harrison C, Greenberg M (2006) Identification of components responsible for the odor of cigar smoker's breath. J Agric Food Chem 54:497–501

    Article  CAS  Google Scholar 

  • Besson I, Creuly C, Gros JB, Larroche C (1997) Pyrazine production by Bacillus subtilis in solid-state fermentation on soybeans. Appl Microbiol Biotechnol 47:489–495

    Article  CAS  Google Scholar 

  • Buttery RG, Seifert RM, Guadagni DG, Ling LC (1971) Characterization of volatile pyrazine and pyridine components of potato chips. J Agric Food Chem 19:969–971

    Article  CAS  Google Scholar 

  • Fetzner S (2000) Enzymes involved in the aerobic bacterial degradation of N-heteroaromatic compounds: molybdenum hydroxylases and ring-opening 2, 4-dioxygenases. Naturwissenschaften 87:59–69

    Article  CAS  Google Scholar 

  • Grosch W (1993) Detection of potent odorants in foods by aroma extract dilution analysis. Trends Food Sci Technol 4:68–73

    Article  CAS  Google Scholar 

  • Grosch W (1994) Determination of potent odorants in food by aroma extract dilution analysis (AEDA) and calculation of odour activity values (OAVs). Flavour Fragr J 9:147–158

    Article  CAS  Google Scholar 

  • Grosch W (2001) Review: evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem Senses 26:255–545

    Article  Google Scholar 

  • Hawksworth G, Scheline RR (1975) Metabolism in the rat of some pyrazine derivatives having flavour importance in food. Xenobiotica 5:389–399

    Article  CAS  Google Scholar 

  • Hwang HI, Hartman TG, Rosen RT, Ho CT (1993) Formation of pyrazines from the Maillard reaction of glucose and g1utamine-amide-15N. J Agric Food Chem 41:2112–2115

    Article  CAS  Google Scholar 

  • Ito T, Sugawara E, Miyanohara JI, Sakurai Y, Odagiri S (1989) Effect of amino acids as nitrogen sources on microbiological formation of pyrazines. Nippon Shokuin Kogyo Gakkaishi 36:762–764

    CAS  Google Scholar 

  • Jones JH, Bicking JB, Cragoe EJ Jr (1967) Pyrazine diuretics. IV. N-Amidino-3-amino-6-substituted pyrazinecarboxamides. J Med Chem 10:899–903

    Article  CAS  Google Scholar 

  • Katz A, Gvaryahu G, Robinzon B, Snapir N, Barnea A (1999) The effect of pyrazine odor on body weight and the weight of various organs in chicks (Gallus gallus domesticus). Poultry Sci 78:1786–1789

    CAS  Google Scholar 

  • Kiener A (1992) Enzymatic oxidation of methyl groups on aromatic heterocycles: a versatile method for the preparation of heteroaromatic carboxylic acids. Angew Chem Int Ed Engl 31:774–775

    Article  Google Scholar 

  • Kiener A, Heinzmann K, Bokel M (1992) Microbiological process for the production of hydroxylated pyrazine derivatives. US Pat No 5173412

  • Kiener A, Gameren YV, Bokel M (1993) Microbial process for the production of hydroxylated heterocycles. US Pat No 5229278

  • Kim KS, Lee HJ, Shon DH, Chung DK (1994) Optimum conditions for the production of tetramethylpyrazine flavour compound by aerobic fed-batch culture of Lactococcus lactis subsp. lactis biovar diacetylactis FC1. J Microbiol Biotechnol 4:327–332

    CAS  Google Scholar 

  • Kim ND, Kwak MK, Kim SG (1997) Inhibition of cytochrome P450 2EI expression by 2-(allylthio)pyrazine, a potential chemoprotective agent: hepatoprotective effects. Biochem Pharmacol 51:261–269

    Article  Google Scholar 

  • Kim SG, Kedderis GL, Batra R, Novak RF (1993) Induction of rat liver microsomal epoxide hydrolase by thiazole and pyrazine: hydrolysis of 2-cyanoethylene oxide. Carcinogenesis 14:1665–1670

    Article  CAS  Google Scholar 

  • Koehler PE, Mason ME, Newel JA (1969) Formation of pyrazine compounds in sugar- amino acid model systems. J Agric Food Chem 17:393–396

    Article  CAS  Google Scholar 

  • Lian X, Wang S, Xu G, Lin N, Li Q, Zhu H (2008) The application with tetramethyl pyrazine for antithrombogenicity improvement on silk fibroin surface. Appl Surf Sci 255:480–482

    Article  CAS  Google Scholar 

  • Maga JA, Sizer CF (1973) Pyrazines in foods. A review. J Agric Food Chem 21:22–30

    Article  CAS  Google Scholar 

  • Mattey M, Harle EM (1976) Aerobic metabolism of pyrazine compounds by a Pseudomonas species. Biochem Soc Trans 4:492–494

    CAS  Google Scholar 

  • Milczarska B, Foks H, Sokołowska J, Janowiec M, Zwolska Z, Andrzejczyk Z (1999) Studies on pyrazine derivatives. XXXIII. Synthesis and tuberculostatic activity of 1-[1-(2-pyrazinyl)-ethyl]-4-N-substituted thiosemicarbazide derivatives. Acta Pol Pharm 56:121–126

    CAS  Google Scholar 

  • Nie SQ, Kwan CY, Epand RM (1992) Pyrazine derivatives affect membrane fluidity of vascular smooth muscle microsomes in relation to their biological activity. Europ J Pharmacol 244:15–19

    Article  Google Scholar 

  • Ranau R, Steinhart H (2004) Bewertung und Quantifizierung von Leitsubstanzen aus der geruchstragenden Abluft von Lebensmittelbetrieben und der Ferkelaufzucht. Erfassung und Minimierung von Gerüchen. In: Niemeyer B, Robers A, Thiesen P (eds) Messung und Minimierung von Gerüchen, Hamburger Berichte 23. Verlag Abfall aktuell, Stuttgart, pp 147–165

    Google Scholar 

  • Rappert S, Botsch K, Nagorny S, Francke W, Müller R (2006) Degradation of 2, 3-diethyl-5-methylpyrazine by a newly discovered bacterium Mycobacterium sp. strain DM-11. Appl Environ Microbiol 72:1437–1444

    Article  CAS  Google Scholar 

  • Rappert S, Li R, Kokova M, Antholz M, Nagorny S, Francke W, Müller R (2007) Degradation of 2, 5-dimethylpyrazine by Rhodococcus erythropolis strain DP-45 isolated from a waste gas treatment plant of a fishmeal processing company. Biodegradation 18:585–596

    Article  CAS  Google Scholar 

  • Rappert S, Müller R (2005a) Odor compounds in waste gas emissions from agricultural operations and food industries. Waste Manag 25:887–907

    Article  CAS  Google Scholar 

  • Rappert S, Müller R (2005b) Microbial degradation of selected odorous substances. Waste Manag 25:940–954

    Article  CAS  Google Scholar 

  • Sala C, Mestres M, Martí MP, Busto O, Guasch J (2000) Headspace solid-phase microextraction method for determining 3-alkyl-2-methoxypyrazines in musts by means of polydimethylsiloxane-divinylbenzene fibres. J Chromatogr A 880:93–99

    Article  CAS  Google Scholar 

  • Seifert RM, Buttery DG, Guadagni DG, Black DR, Harris JG (1970) Synthesis of some 2-methoxy-3-alkylpyrazines with strong bell pepper-like odors. J Agric Food Chem 18:246–249

    Article  CAS  Google Scholar 

  • Shu CK (1999) Pyrazine formation from serine and threonine. J Agric Food Chem 47:43324335

    Article  Google Scholar 

  • Tinschert A, Tschech A, Heinzmann K, Kiener A (2000) Novel regioselective hydroxylations of pyridine carboxylic acids at position C2 and pyrazine carboxylic acids at position C3. Appl Microbiol Biotechnol 53:185–195

    Article  CAS  Google Scholar 

  • Wagner R, Czerny M, Bielohradsky J, Grosch W (1999) Structure–odour–activity relationships of alkylpyrazines. Z Lebensm Unters Forsch A 208:308–316

    Article  CAS  Google Scholar 

  • Wheeler JW, Blum MS (1973) Alkylpyrazine alarm pheromones in ponerine ants. Science 182:501–503

    Article  CAS  Google Scholar 

  • Whitehouse LW, Lodge BA, By AW, Thomas BH (1987) Metabolic disposition of pyrazinamide in the rat: identification of a novel in vivo metabolite common to both rat and human. Biopharm Drug Dispos 8:307–318

    Article  CAS  Google Scholar 

  • Wieser M, Heinzmann K, Kiener A (1997) Bioconversion of 2-cyanopyrazine to 5-hydroxypyrazine-2-carboxylic acid with Agrobacterium sp. DSM 6336. Appl Microbiol Biotechnol 48:174–176

    Article  CAS  Google Scholar 

  • Woolfson A, Rothschild M (1990) Speculating about pyrazines. Proc R Soc Lond B 242:113–119

    Article  CAS  Google Scholar 

  • Yamaguchi N, Toda T, Teramoto T, Okuhira T, Sugawara E, Ito T (1993) Effect of sugars on microbial pyrazine formation by Bacillus natto in synthetic liquid medium. Nippon Shokuin Kogyo Gakkaishi 40:841–848

    CAS  Google Scholar 

  • Yamamoto T, Moriwaki Y, Takahashi S, Hada T, Higashino K (1987) In vitro conversion of pyrazinamide into 5-hydroxypyrazinamide and that of pyrazinoic acid into 5-hydroxypyrazinoic acid by xanthinoxidase from the human liver. Biochem Pharmacol 19:3317–3318

    Article  Google Scholar 

Download references

Acknowledgements

We would like to dedicate this work to Prof. F. Lingens on the occasion of his 85th birthday and to Prof. V. Kasche on the occasion of his 70th birthday. We thank Nick Bishop for the critical reading of the manuscript. Our own work cited was financed by the Bundesministerium für Bildung und Forschung (BMBF) under contract No. 330294.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, R., Rappert, S. Pyrazines: occurrence, formation and biodegradation. Appl Microbiol Biotechnol 85, 1315–1320 (2010). https://doi.org/10.1007/s00253-009-2362-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2362-4

Keywords

Navigation