Skip to main content
Log in

Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The aim of this work has been to study the substrate specificity of two aromatic peroxygenases concerning polyaromatic compounds of different size and structure as well as to identify the key metabolites of their oxidation. Thus, we report here on new pathways and reactions for 2-methylnaphthalene, 1-methylnaphthalene, dibenzofuran, fluorene, phenanthrene, anthracene and pyrene catalyzed by peroxygenases from Agrocybe aegerita and Coprinellus radians (abbreviated as AaP and CrP). AaP hydroxylated the aromatic rings of all substrates tested at different positions, whereas CrP showed a limited capacity for aromatic ring-hydroxylation and did not hydroxylate phenanthrene but preferably oxygenated fluorene at the non-aromatic C9-carbon and methylnaphthalenes at the side chain. The results demonstrate for the first time the broad substrate specificity of fungal peroxygenases for polyaromatic compounds, and they are discussed in terms of their biocatalytic and environmental implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altarawneh M, Kennedy EM, Dlugogorski BZ, Mackie JC (2008) Computational study of the oxidation and decomposition of dibenzofuran under atmospheric conditions 3. J Phys Chem A 112:6960–6967. doi:10.1021/jp800093j

    Article  CAS  PubMed  Google Scholar 

  • Anh DH, Ullrich R, Benndorf D, Svatos A, Muck A, Hofrichter M (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol 73:5477–5485. doi:10.1128/AEM.00026-07

    Article  CAS  PubMed  Google Scholar 

  • Aranda E, Kinne M, Kluge M, Ullrich R, Hofrichter M (2009) Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Appl Microbiol Biotechnol 82:1057–1066. doi:10.1007/s00253-008-1778-6

    Article  CAS  PubMed  Google Scholar 

  • Ayala M, Robledo NR, Lopez-Munguia A, Vazquez-Duhalt R (2000) Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel. Environ Sci Technol 34:2804–2809. doi:10.1021/es991270o

    Article  CAS  Google Scholar 

  • Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R (1991) A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Poll 60:279–300. doi:10.1007/BF00282628

    Article  CAS  Google Scholar 

  • Bogan BW, Lamar RT, Hammel KE (1996) Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl Environ Microbiol 62:1788–1792

    CAS  PubMed  Google Scholar 

  • Brown CM, Reisfeld B, Mayeno AN (2008) Cytochromes P450: a structure-based summary of biotransformations using representative substrates. Drug Metab Rev 40:1–100. doi:10.1080/03602530802309742

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Yang SK (1984) Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl Environ Microbiol 47:119–124

    CAS  PubMed  Google Scholar 

  • Cerniglia CE, Morgan JC, Gibson DT (1979) Bacterial and fungal oxidation of dibenzofuran. Biochem J 180:175–185

    CAS  PubMed  Google Scholar 

  • Cerniglia CE, Lambert KJ, Miller DW, Freeman JP (1984) Transformation of 1- and 2-methylnaphthalene by Cunninghamella elegans. Appl Environ Microbiol 47:111–118

    CAS  PubMed  Google Scholar 

  • Cerniglia CE, White GL, Heflich RH (1985) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons. Arch Microbiol 143:105–110. doi:10.1007/BF00411031

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Kelly DW, Freeman JP, Miller DW (1986) Microbial metabolism of pyrene. Chem Biol Interact 57:203–216

    Article  CAS  PubMed  Google Scholar 

  • Chupungarsa K, Thaniyavarnb S, Rerngsamranb P (2009) Polycyclic aromatic hydrocarbons degradation by Agrocybe sp. CU-43 and its fluorene transformation. Int Biodet Biodegr 63:93–99. doi:10.1016/j.ibiod.2008.06.006

    Article  Google Scholar 

  • Collins PJ, Kotterman M, Field JA, Dobson A (1996) Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62:4563–4567

    CAS  PubMed  Google Scholar 

  • Eibes G, Cajthaml T, Moreira MT, Feijoo G, Lema JM (2006) Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64:408–414. doi:10.1016/j.chemosphere.2005.11.075

    Article  CAS  PubMed  Google Scholar 

  • Garon D, Krivobok S, Seigle-Murandi F (2000) Fungal degradation of fluorene. Chemosphere 40:91–97. doi:10.1016/S0045-6535(99)00250-7

    Article  CAS  PubMed  Google Scholar 

  • Gesell M, Hammer E, Mikolasch A, Schauer F (2004) Oxidation and ring cleavage of dibenzofuran by the filamentous fungus Paecilomyces lilacinus. Arch Microbiol 182:51–59. doi:10.1007/s00203-004-0695-z

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP (1991) Reactions and significance of cytochrome P-450 enzymes. J Biol Chem 266:10019–10022

    CAS  PubMed  Google Scholar 

  • Hammel KE (1995) Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect 103(Suppl 5):41–43

    Article  CAS  PubMed  Google Scholar 

  • Hammel KE, Green B, Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci USA 88:10605–10608

    Article  CAS  PubMed  Google Scholar 

  • Hammel KE, Gai WZ, Green B, Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:1832–1838

    CAS  PubMed  Google Scholar 

  • Hammer E, Krowas D, Schafer A, Specht M, Francke W, Schauer F (1998) Isolation and characterization of a dibenzofuran-degrading yeast: identification of oxidation and ring cleavage products. Appl Environ Microbiol 64:2215–2219

    CAS  PubMed  Google Scholar 

  • Harford-Cross CF, Carmichael AB, Allan FK, England PA, Rouch DA, Wong LL (2000) Protein engineering of cytochrome P-450(cam) (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Protein Eng 13:121–128

    Article  CAS  PubMed  Google Scholar 

  • Harvey RG (1991) Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity. Cambridge Monographs on Cancer Research. Cambridge

  • Hofrichter M, Ullrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71:276–288. doi:10.1007/s00253-006-0417-3

    Article  CAS  PubMed  Google Scholar 

  • Isin EM, Guengerich FP (2008) Substrate binding to cytochromes P450. Anal Bioanal Chem 392:1019–1030. doi:10.1007/s00216-008-2244-0

    Article  CAS  PubMed  Google Scholar 

  • Johannes C, Majcherczyk A, Huttermann A (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol 46:313–317. doi:10.1007/s002530050823

    Article  CAS  PubMed  Google Scholar 

  • Kluge MG, Ullrich R, Scheibner K, Hofrichter M (2007) Spectrophotometric assay for detection of aromatic hydroxylation catalyzed by fungal haloperoxidase-peroxygenase. Appl Microbiol Biotechnol 75:1473–1478. doi:10.1007/s00253-007-0942-8

    Article  CAS  PubMed  Google Scholar 

  • Kluge M, Ullrich R, Dolge C, Scheibner K, Hofrichter M (2009) Hydroxylation of naphthalene by aromatic peroxygenase from Agrocybe aegerita proceeds via oxygen transfer from H2O2 and intermediary epoxidation. Appl Microbiol Biotechnol 81:1071–1076. doi:10.1007/s00253-008-1704-y

    Article  CAS  PubMed  Google Scholar 

  • Kotterman MJJ, Heessels E, Jong E, Field JA (1994) The physiology of anthracene biodegradation by the white-rot fungus Bjerkandera sp. strain BOS55. Appl Microbiol Biotechnol 42:179–186. doi:10.1007/BF00170243

    Article  CAS  Google Scholar 

  • Lambert M, Kremer S, Sterner O, Anke H (1994) Metabolism of pyrene by the basidiomycete Crinipellis stipitaria and identification of pyrenequinones and their hydroxylated precursors in strain JK375. Appl Environ Microbiol 60:3597–3601

    CAS  PubMed  Google Scholar 

  • Liu JZ, Wang M (2007) Improvement of activity and stability of chloroperoxidase by chemical modification. BMC Biotechnol 18:7–23. doi:10.1186/1472-6750-7-23

    Google Scholar 

  • Manoj KM, Hager LP (2008) Chloroperoxidase, a janus enzyme. Biochemistry 47:2997–3003. doi:10.1021/bi7022656

    Article  CAS  PubMed  Google Scholar 

  • Manoj KM, Yi X, Rai GP, Hager LP (1999) A kinetic epoxidation assay for chloroperoxidase. Biochem Biophys Res Commun 266:301–303. doi:10.1006/bbrc.1999.1810

    Article  CAS  PubMed  Google Scholar 

  • Marques HL (2007) Insights into porphyrin chemistry provided by the microperoxidases, the haempeptides derived from cytochrome c. Dalton Trans 39:4371–4385

    Article  PubMed  Google Scholar 

  • Miura R, Honmaru S, Nakazaki M (1968) The absolute configurations of the metabolites of naphthalene and phenanthrene in mammalian systems. Tetrahedron Lett 50:5271–5274

    Article  CAS  PubMed  Google Scholar 

  • Murata Y, Denda A, Maruyama H, Konishi Y (1993) Chronic toxicity and carcinogenicity studies of 1-methylnaphthalene in B6C3F1 mice. Fundam Appl Toxicol 21:44–51. doi:10.1006/faat.1993.1070

    Article  CAS  PubMed  Google Scholar 

  • Nassar MN, Nesarikar VN, Lozano R, Parker WL, Huang Y, Palaniswamy V, Xu W, Khaselev N (2004) Influence of formaldehyde impurity in polysorbate 80 and PEG-300 on the stability of a parenteral formulation of BMS-204352: identification and control of the degradation product. Pharm Dev Technol 9:189–195. doi:10.1081/PDT-120030249

    Article  CAS  PubMed  Google Scholar 

  • Neujahr HY, Gaal A (1973) Phenol hydroxylase from yeast. Purification and properties of the enzyme from Trichosporon cutaneum. Eur J Biochem 35:386–400. doi:10.1111/j.1432-1033.1973.tb02851.x

    Article  CAS  PubMed  Google Scholar 

  • Omura T (1999) Forty years of cytochrome P450. Biochem Biophys Res Commun 266:690–698. doi:10.1006/bbrc.1999.1887

    Article  CAS  PubMed  Google Scholar 

  • Omura T (2005) Heme-thiolate proteins. Biochem Biophys Res Commun 338:404–409. doi:10.1016/j.bbrc.2005.08.267

    Article  CAS  PubMed  Google Scholar 

  • Osman AM, Koerts J, Boersma MG, Boeren S, Veeger C, Rietjens IM (1996) Microperoxidase/H2O2-catalyzed aromatic hydroxylation proceeds by a cytochrome-P-450-type oxygen-transfer reaction mechanism. Eur J Biochem 240:232–238. doi:10.1111/j.1432-1033.1996.0232h.x

    Article  CAS  PubMed  Google Scholar 

  • Park JB, Clark DS (2006) New reaction system for hydrocarbon oxidation by chloroperoxidase. Biotechnol Bioeng 94:189–192. doi:10.1002/bit.20769

    Article  CAS  PubMed  Google Scholar 

  • Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M (2009) Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84:885–897. doi:10.1007/s00253-009-2000-1

    Google Scholar 

  • Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1993) Biotransformation of fluorene by the fungus Cunninghamella elegans. Appl Environ Microbiol 59:1977–1980

    CAS  PubMed  Google Scholar 

  • Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997a) Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 63:3919–3925

    CAS  PubMed  Google Scholar 

  • Sack U, Hofrichter M, Fritsche W (1997b) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol Lett 152:227–234. doi:10.1002/jobm.3620370408

    Article  CAS  PubMed  Google Scholar 

  • Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 21:257–276. doi:10.2133/dmpk.21.257

    Article  CAS  PubMed  Google Scholar 

  • Sohl CD, Isin EM, Eoff RL, Marsch GA, Stec DF, Guengerich FP (2008) Cooperativity in oxidation reactions catalyzed by cytochrome P450 1A2: highly cooperative pyrene hydroxylation and multiphasic kinetics of ligand binding. J Biol Chem 283:7293–7308. doi:10.1074/jbc.M709783200

    Article  CAS  PubMed  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60:212–217. doi:10.1007/s00253-002-1105-6

    Article  CAS  PubMed  Google Scholar 

  • Sutherland JB, Selby AL, Freeman JP, Evans FE, Cerniglia CE (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol 57:3310–3316

    CAS  PubMed  Google Scholar 

  • Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B Environ 46:1–15. doi:10.1016/S0926-3373(03)00228-5

    Article  CAS  Google Scholar 

  • Ullrich R, Hofrichter M (2005) The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett 579:6247–6250. doi:10.1016/j.febslet.2005.10.014

    Article  CAS  PubMed  Google Scholar 

  • Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293. doi:10.1007/s00018-007-6362-1

    Article  CAS  PubMed  Google Scholar 

  • Ullrich R, Nuske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581. doi:10.1128/AEM.70.8.4575-4581.2004

    Article  CAS  PubMed  Google Scholar 

  • Ullrich R, Dolge C, Kluge M, Hofrichter M (2008) Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita. FEBS Lett 582:4100–4106. doi:10.1016/j.febslet.2008.11.006

    Article  CAS  PubMed  Google Scholar 

  • Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241–267. doi:10.1080/10409230600817422

    Article  CAS  PubMed  Google Scholar 

  • Yang SK (1988) Stereoselectivity of cytochrome P-450 isozymes and epoxide hydrolase in the metabolism of polycyclic aromatic hydrocarbons. Biochem Pharmacol 37:61–70. doi:10.1016/0006-2952(88)90755-1

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Yang Y, Leakey JE, Cerniglia CE (1996) Phase I and phase II enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol Lett 138:221–226. doi:10.1111/j.1574-6968.1996.tb08161.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding of this research is gratefully acknowledged to the Spanish Science and Technology Foundation (FECYT) and MICINN (grant to E. Aranda), the European Union (integrated project BIORENEW), the “Deutsches Bundesministerium für Bildung, Wissenschaft und Forschung” (BMBF; project 0313433D) and the “Deutsche Bundesstiftung Umwelt” (DBU; project 13225-32). Special thanks go to M. Kluge and M. Kinne for their analytical advice and C. Liers, M. Poraj-Kobielska and M. Pecyna for their interesting discussions. We thank U. Schneider and M. Brant for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabet Aranda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DOC 3439 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aranda, E., Ullrich, R. & Hofrichter, M. Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21, 267–281 (2010). https://doi.org/10.1007/s10532-009-9299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9299-2

Keywords

Navigation