Skip to main content

Advertisement

Log in

Distant land use affects terrestrial and aquatic habitats of high naturalness

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Biotas from all ecosystems need to respond to factors that determine habitat suitability. These factors originate from different scales. Effects can be assumed to be hierarchical in the order large-scale geographic > regional > local > small-scale in-habitat factors. We aimed at the identification of general patterns by comparisons between ecosystems (forest floor snails, hololimnic stream macroinvertebrates) and across scales, and include potential seasonal effects. Sampling sites displayed signs of naturalness, such as high levels of deadwood accumulation in the forests, or a lack of artificial stream bed fixation plus a “good” to “high” score for the assemblage-derived Multimetric Index (MMI) in the streams. Terrestrial and aquatic assemblages of non-emergent taxa fluctuated independent of seasonal effects. They differed in their relative correlation with environmental matrices with quasi-concentric effects in forests, and longitudinal effects in streams. Large-scale factors, namely geographic position, strongly influenced assemblage turnover, but the effect is based on a high covariation between geographic position and environmental factors. We thus extracted variables that best explained species turnover after correcting for spatio-temporal effects. The terrestrial community assembling was habitat-based and mainly responded to soil acidification, distance to disturbances, and regional scale deforestation and deciduous/mixed forest cover. The stream assemblages were structured by regional pasture cover, organic pollution, regional deciduous forest cover and microlithal cover. Apparently, community assembly occurs along with changes in regional forest cover and the transport of nutrients and matter that can originate from a distance, irrespective of ecosystem and assumed “naturalness”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alewell C, Armbruster M, Bittersohl J, Evans CD, Meesenburg H, Moritz K, Prechtel A (2002) Are there signs of acidification reversal in freshwaters of the low mountain ranges in Germany? Hydrol Earth Syst Sci 5:367–378

    Article  Google Scholar 

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Ann Rev Ecol 35:257–284

    Article  Google Scholar 

  • Basterretxea G, Tovar-Sanchez A, Beck AJ, Masqué P, Bokuniewicz HJ, Coffey R, Duarte CM, Garcia-Orellana J, Garcia-Solsona E, Martinez-Ribes L, Vaquer-Sunyer R (2010) Submarine groundwater discharge to the coastal environment of a Mediterranean island (Majorca, Spain): ecosystem and biogeochemical significance. Ecosystems 13:629–643

    Article  CAS  Google Scholar 

  • Bengtsson J, Nilsson SG, Ås S (1995) Non-random occurrence of threatened land snails on forest islands. Biodiv Lett 2:140–148

    Article  Google Scholar 

  • Böhmer J, Rawer-Jost C, Zenker A, Meier C, Feld C, Biss R, Hering D (2004) Assessing streams in Germany with benthic invertebrates: development of a multimeric invertebrate based assessment system. Limnologica 34:416–432

    Google Scholar 

  • Bond NR, Lake PS (2003) Local habitat restoration in streams: constraints on the effectiveness of restoration for stream biota. Ecol Manag Restor 4:193–198

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Ann Rev Ecol 29:59–81

    Article  Google Scholar 

  • Briers RA, Gee JHR (2004) Riparian forestry management and adult stream insects. Hydrol Earth Syst Sci 8:545–549

    Article  Google Scholar 

  • Brosse S, Arbuckle CJ, Townsend CR (2003) Habitat scale and biodiversity: influence of catchment, stream reach and bedform scales on local invertebrate diversity. Biodiv Cons 12:2057–2075

    Article  Google Scholar 

  • Ellis J, Schneider DC (2008) Spatial and temporal scaling in benthic ecology. J Experim Marine Biol Ecol 366:92–98

    Article  Google Scholar 

  • European Environmental Agency (2002) Ecoregions for rivers and lakes. www.eea.europa.eu/data-and-maps. Accessed 16 September 2010

  • European Environmental Agency (2009) Biogeographical regions in Europe. www.eea.europa.eu/data-and-maps. Accessed 16 September 2010

  • Finzi AC, Canham CD, Van Breemen N (1998) Canopy tree-soil interactions within temperate forests: species effects on pH and cations. Ecol Appl 8:447–454

    Google Scholar 

  • Furse M, Hering D, Moog O, Verdonschot PFM, Sandin L, Brabec K, Gritzalis K, Buffagni A, Pinto P, Friberg N, Murray-Bligh J, Kokes J, Alber R, Usseglio-Polatera P, Haase P, Sweeting R, Bis B, Szoszkiewicz K, Soszka H, Springe G, Sporka F, Krno I (2006) The STAR project: context, objectives and approaches. Hydrobiologia 566:3–29

    Article  Google Scholar 

  • Götmark F, von Proschwitz T, Franc N (2008) Are small sedentary species affected by habitat fragmentation? Local vs. landscape factors predicting species richness and composition of land molluscs in Swedish conservation forests. J Biogeogr 35:1062–1076

    Article  Google Scholar 

  • Haase P, Lohse S, Pauls S, Schindehuette K, Sundermann A, Rolauffs P, Hering D (2004a) Assessing streams in Germany with benthic invertebrates: development of a practical standardised protocol for macroinvertebrate sampling and sorting. Limnologica 34:349–365

    Google Scholar 

  • Haase P, Pauls S, Sundermann A, Zenker A (2004b) Testing different sorting techniques in macroinvertebrate samples from running waters. Limnologica 34:366–378

    Google Scholar 

  • Hancock PJ (2002) Human impacts on the stream-groundwater exchange zone. Environ Manag 29:763–781

    Article  Google Scholar 

  • Harding JS, Benfield EF, Bolstad PV, Helfman GS, Jones EBD (1998) Stream biodiversity: the ghost of land use past. Proc Natl Acad Sci USA 95:14843–14847

    Article  PubMed  CAS  Google Scholar 

  • Hering D, Buffagni A, Moog O, Sandin L, Sommerhaeuser M, Stubauer I, Feld C, Johnson R, Pinto P, Skoulikidis N, Verdonschot P, Zahradkova S (2003) The development of a system to assess the ecological quality of streams based on macroinvertebrates—design of the sampling programme within the AQEM project. Int Rev Hydrobiol 88:345–361

    Article  Google Scholar 

  • Hylander K, Nilsson C, Jonsson BG, Goethner T (2005) Differences in habitat quality explain nestedness in a land snail meta-community. Oikos 108:351–361

    Article  Google Scholar 

  • Kappes H (2006) Relations between forest management and slug assemblages (Gastropoda) of deciduous regrowth forests. Forest Ecol Manag 237:450–457

    Article  Google Scholar 

  • Kappes H, Catalano C, Topp W (2007) Coarse woody debris ameliorates chemical and biotic soil parameters of acidified broad-leaved forests. Appl Soil Ecol 36:190–198

    Article  Google Scholar 

  • Kappes H, Jordaens K, Hendrickx F, Maelfait J-P, Lens L, Backeljau T (2009a) Response of snails and slugs to fragmentation of lowland forests in NW Germany. Landsc Ecol 24:685–697

    Article  Google Scholar 

  • Kappes H, Jordaens K, Van Houtte N, Hendrickx F, Maelfait J-P, Lens L, Backeljau T (2009b) A land snail’s view of a fragmented landscape. Biol J Linn Soc 98:839–850

    Article  Google Scholar 

  • Kappes H, Sundermann A, Haase P (2010) High spatial variability biases the space-for-time approach: implications of hidden trends for environmental assessment. Ecol Indic 10:1202–1205

    Article  Google Scholar 

  • Kauffman JB, Krueger WC (1984) Livestock impacts on riparian ecosystems and streamside management implications: a review. J Range Manag 37:430–438

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Lemly AD (1982) Modification of benthic insect communities in polluted streams: combined effects of sedimentation and nutrient enrichment. Hydrobiologia 87:229–245

    Article  Google Scholar 

  • Leuven RSEW, van der Velde G, Baijens I, Snijders J, van der Zwart C, Lenders HJR, bij de Vaate A (2009) The river Rhine: a global highway for dispersal of aquatic invasive species. Biol Invasions 11:1989–2008

    Article  Google Scholar 

  • Levin SA (2000) Multiple scales and the maintenance of biodiversity. Ecosystems 3:498–506

    Article  Google Scholar 

  • Likens GE, Bormann FH (1974) Linkages between terrestrial and aquatic ecosystems. Bioscience 24:447–456

    Article  Google Scholar 

  • Martin K, Sommer M (2004) Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. J Biogeogr 31:531–545

    Article  Google Scholar 

  • Martinson L, Lamersdorf N, Warfvinge P (2005) The solling roof revisited–slow recovery from acidification observed and modeled despite a decade of “clean-rain” treatment. Environ Pollut 135:293–302

    Article  PubMed  CAS  Google Scholar 

  • MCPFE (2003) Improved pan-European indicators for sustainable forest management. In: Ministerial conference on the protection of forests in Europe (MCPFE). Liaison Unit Vienna, Vienna

  • Mokany K, Richardson AJ, Poloczanska ES, Ferrier S, The CSIRO CAF Biodiversity Working Group (2010) Uniting marine and terrestrial modelling of biodiversity under climate change. Trends Ecol Evol 25:550–551

    Article  PubMed  Google Scholar 

  • MURL (1989) Klima-Atlas von Nordrhein-Westfalen Raumordnung und Landwirtschaft des Landes NRW. Ministerium für Umwelt, Düsseldorf

    Google Scholar 

  • Mykrä H (2008) Predicting the stream macroinvertebrate fauna across regional scales: influence of geographical extent on model performance. J N Am Benthol Soc 27:705–716

    Article  Google Scholar 

  • Mykrä H, Heino J, Muotka T (2004) Variability of lotic macroinvertebrate assemblages and stream habitat characteristics across hierarchical landscape classifications. Environ Manag 34:341–352

    Article  Google Scholar 

  • Nekola JC (2010) Acidophilic terrestrial gastropod communities of North America. J Moll Stud 76:144–156

    Article  Google Scholar 

  • Palmer MA, Ambrose RF, Poff LN (1997) Ecological theory and community restoration ecology. Restor Ecol 5:291–300

    Article  Google Scholar 

  • Richards C, Johnson LB, Host GE (1996) Landscape-scale influences on stream habitats and biota. Can J Fisheries Aquat Sci 53(Suppl. 1):295–311

    Article  Google Scholar 

  • Sandin L (2009) The effects of catchment land-use, near-stream vegetation, and river hydromorphology on benthic macroinvertebrate communities in a south-Swedish catchment. Fundam Appl Limnol/Arch Hydrobiol 174:75–87

    Article  Google Scholar 

  • Stoddard JL, Jeffries DS, Lukewille A, Clair TA, Dillon PJ, Driscoll CT, Forsius M, Johannessen M, Kahl JS, Kellogg JH (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578

    Article  CAS  Google Scholar 

  • Strayer DL, Beighley RE, Thompson LC, Brooks S, Nilsson C, Pinay G, Naiman RJ (2003) Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems 6:407–423

    Article  Google Scholar 

  • Suominen O, Edenius L, Ericsson G, Resco de Dios V (2003) Gastropod diversity in aspen stands in coastal northern Sweden. Forest Ecol Manag 175:403–412

    Article  Google Scholar 

  • Townsend CR, Doledec S, Norris R, Peacock K, Arbuckle C (2003) The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshw Biol 48:768–785

    Article  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Ann Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Van De Koppel J, Bardgett RD, Bengtsson J, Rodriguez-Barrueco C, Rietkerk MG, Wassen MJ, Wolters V (2005) The effects of spatial scale on trophic interactions. Ecosystems 8:801–807

    Article  Google Scholar 

  • Vandewalle M, de Bello F, Berg MP, Bolger T, Dolédec S, Dubs F, Feld CK, Harrington R, Harrison PA, Lavorel S, da Silva PM, Moretti M, Niemelä J, Santos P, Sattler T, Sousa JP, Sykes MT, Vanbergen AJ, Woodcock BA (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiv Cons 19:2921–2947

    Article  Google Scholar 

  • Wall DH, Palmer MA, Snelgrove PVR (2001) Biodiversity in critical transition zones between terrestrial, freshwater, and marine soils and sediments: processes, linkages, and management implications. Ecosystems 4:418–420

    Article  Google Scholar 

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Ann Rev Ecol 17:567–594

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the research funding programme “LOEWE -Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts. Sami Domisch kindly helped with the extraction of the CLC data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Kappes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappes, H., Sundermann, A. & Haase, P. Distant land use affects terrestrial and aquatic habitats of high naturalness. Biodivers Conserv 20, 2297–2309 (2011). https://doi.org/10.1007/s10531-011-0089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0089-x

Keywords

Navigation