Skip to main content

Advertisement

Log in

Micro-managing arthropod invasions: eradication and control of invasive arthropods with microbes

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Non-indigenous arthropods are increasingly being introduced into new areas worldwide and occasionally they cause considerable ecological and economic harm. Many invasive arthropods particularly pose problems to areas of human habitation and native ecosystems. In these cases, the use of environmentally benign materials, such as host-specific entomopathogens, can be more desirable than broader spectrum control tactics that tend to cause greater non-target effects. The majority of successful eradication programs using arthropod pathogens have targeted invasive Lepidoptera with Bacillus thuringiensis kurstaki (Btk), such as eradication efforts against the gypsy moth, Lymantria dispar (L.), in North America and New Zealand. Both Btk and Lymantria dispar nucleopolyhedrovirus have been successfully used in efforts to limit the spread of L. dispar in the United States. For invasive arthropod species that are well established, suppression programs have successfully used arthropod-pathogenic viruses, bacteria, fungi and nematodes for either short- or long-term management. We will summarize the use of pathogens and nematodes in invasive arthropod management programs within a general context, and compare the use of microbes in gypsy moth management with diverse microbes being developed for use against other invasive arthropods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allwood AJ, Vueti ET, Leblanc L, Bull R (2002) Eradication of introduced Bactrocera species (Diptera: Tephritidae) in Nauru using male annihilation and protein bait application techniques. In: Veitch CR, Clout MN (eds) Turning the tide: The eradication of invasive species. Occasional Paper of the IUCN Survival Commission 27, pp 19–25

  • Andow DA, Kareiva PM, Levin SA, Okubo A (1990) Spread of invading organisms. Landsc Ecol 4:177–188

    Article  Google Scholar 

  • Anonymous (1992) The new world screwworm eradication programme: North Africa 1988–1992. Food and Agriculture of the United Nations

  • Aronson AI, Beckman W, Dunn P (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50:1–24

    PubMed  CAS  Google Scholar 

  • Barinaga M (1990) Entomologists in the Medfly maelstrom. Science 247:1168–1169

    Article  PubMed  CAS  Google Scholar 

  • Bedding RA (2009) Controlling the pine-killing woodwasp, Sirex noctilio, with nematodes. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 213–235

    Chapter  Google Scholar 

  • Bossenbroek JM, Kraft CE, Nekola JC (2001) Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecol Appl 11:1778–1788

    Article  Google Scholar 

  • Brockerhoff EG, Bain J, Kimberley M, Knizek M (2006) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J For Res 36:289–298

    Article  Google Scholar 

  • Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci USA 103:15196–15199

    Article  PubMed  CAS  Google Scholar 

  • Burgess AF (1929) Imported insect enemies of the gipsy [sic] moth and the brown-tail moth. USDA Technical Bulletin No. 86, Washington, DC

  • Burnett K, Kaiser B, Pitafi BA, Roumasset J (2006) Prevention, eradication, and containment of invasive species: illustrations from Hawaii. Agric Resour Econ Rev 35:63–77

    Google Scholar 

  • Byers JE, Reichard S, Randall JM, Parker IM, Smith CS, Lonsdale WM, Atkinson IAE, Seastedt TR, Williamson M, Chornesky E, Hayes D (2002) Directing research to reduce the impacts of nonindigenous species. Conserv Biol 16:630–640

    Article  Google Scholar 

  • Carey JR (1991) Establishment of the Mediterranean fruit fly in California. Science 253:1369–1373

    Article  PubMed  CAS  Google Scholar 

  • Carey JR (2008) Excel chart of California cities and medfly captures http://entomology.ucdavis.edu/news/califmedfliescities.html [accessed 18 September 2009]

  • Castrillo LA, Griggs MH, Vandenberg JD (2008) Quantitative detection of Beauveria bassiana GHA (Ascomycota: Hypocreales), a potential microbial control agent of the emerald ash borer, by use of real-time PCR. Biol Control 45:163–169

    Article  CAS  Google Scholar 

  • Chen J, Dai L-Y, Wang X-P, Tian Y-C, Lu M-Z (2005) The cry3Aa gene of Bacillus thuringiensis Bt886 encodes a toxin against long-horned beetles. Appl Microbiol Biotechnol 67:351–356

    Article  PubMed  CAS  Google Scholar 

  • Committee on the Scientific Basis for Predicting the Invasive Potential of Nonindigenous Plants and Plant Pests in the United States (2002) Predicting invasions of nonindigenous plants and plant pests. National Academy Press, Washington, DC

    Google Scholar 

  • Cunningham JT (1998) North America. In: Hunter-Fujita FR, Entwistle PF, Evans HF, Crook NE (eds) Insect viruses and pest management. Wiley, Chichester, pp 313–331

    Google Scholar 

  • D’Amico V, Podgwaite JD, Duke S (2004) Biological activity of Bacillus thuringiensis and associated toxins against Asian longhorned beetle (Coleoptera: Cerambycidae). J Entomol Sci 39:318–324

    Google Scholar 

  • Daane KM, Wilhoit LR (1989) Date palm scale. In: Dahlsten DL, Garcia R (eds) Eradication of exotic pests: analysis with case histories. Yale University Press, New Haven, pp 218–228

    Google Scholar 

  • Dahlsten DL, Garcia R (eds) (1989) Eradication of exotic pests: analysis with case histories. Yale University Press, New Haven

    Google Scholar 

  • Davis JR, Garcia R (1989) Malaria mosquito in Brazil. In: Dahlsten DL, Garcia R (eds) Eradication of exotic pests: analysis with case histories. Yale University Press, New Haven, pp 274–283

    Google Scholar 

  • de Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  CAS  Google Scholar 

  • DeBach P (1964) Some ecological aspects of insect eradication. Bull Entomol Soc Am 10:221–224

    Google Scholar 

  • Delalibera I Jr (2009) Biological control of the cassava green mite in Africa with Brazilian isolates of the fungal pathogen Neozygites tanajoae. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 259–269

    Google Scholar 

  • Doane CC, McManus ML (eds) (1981) The gypsy moth: research towards integrated pest management. USDA Technical Bulletin 1584, Washington, DC

  • Drake JA, Lodge DM (2004) Global hotspots of biological invasions: evaluating options for ballast-water management. Proc R Soc Lond B Biol Sci 271:575–580

    Article  Google Scholar 

  • East Bay Pesticide Alert (2009) http://www.dontspraycalifornia.org/ [accessed 18 September 2009]

  • Ebata T (2009) History of gypsy moth infestations in British Columbia. http://www.for.gov.bc.ca/hfp/gypsymoth/history.htm [accessed 11 June 2009]

  • Edwards PK, Leung B (2009) Re-evaluating eradication of nuisance species: invasion of the tunicate, Ciona intestinalis. Front Ecol Environ 7:326–332

    Article  Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology of biological control. BioControl 46:387–400

    Article  Google Scholar 

  • Elkinton JS, Liebhold AM (1990) Population dynamics of gypsy moth in North America. Annu Rev Entomol 35:571–596

    Google Scholar 

  • Fallon DJ, Solter LF, Keena M, McManus M, Cate JR, Hanks LM (2004) Susceptibility of Asian longhorned beetle, Anoplophora glabripennis (Motchulsky) (Coleoptera: Cerambycidae) to entomopathogenic nematodes. Biol Control 30:430–438

    Article  Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7:355–369

    Google Scholar 

  • Frank JH (2009) Steinernema scapterisci as a biological control agent of Scapteriscus mole crickets. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 115–131

    Chapter  Google Scholar 

  • Galvin TJ, Wyss JH (1996) Screwworm eradication program in Central America. Ann N Y Acad Sci 791:233–240

    Article  PubMed  CAS  Google Scholar 

  • Garczynski SF, Siegel JP (2007) Bacteria. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Dordrecht, pp 175–197

    Chapter  Google Scholar 

  • Genovesi P (2005) Eradications of invasive alien species in Europe: a review. Biol Invasions 7:127–133

    Article  Google Scholar 

  • Glare TR (2009) Use of pathogens for eradication of exotic lepidopteran pests in New Zealand. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 331–349

    Chapter  Google Scholar 

  • Gomi T (2007) Seasonal adaptations of the fall webworm Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) following its invasion of Japan. Ecol Res 22:855–861

    Article  Google Scholar 

  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726

    Article  PubMed  CAS  Google Scholar 

  • Gypsy Moth Digest (2009) Eradication. http://na.fs.fed.us/fhp/gm/eradication/index.shtm [accessed 10 June 2009]

  • Hajek AE (1997) Fungal and viral epizootics in gypsy moth (Lepidoptera: Lymantriidae) populations in central New York. Biol Control 10:58–68

    Article  Google Scholar 

  • Hajek AE (1999) Pathology and epizootiology of Entomophaga maimaiga infections in forest Lepidoptera. Microbiol Mol Biol Rev 63:814–835

    PubMed  CAS  Google Scholar 

  • Hajek AE (2007) Classical biological control of gypsy moth: introduction of the entomopathogenic fungus Entomophaga maimaiga into North America. In: Vincent C, Goettel M, Lazarovits G (eds) Biological control: international case studies. CABI, UK, pp 53–62

    Google Scholar 

  • Hajek AE, Bauer LS (2009) Use of entomopathogens against invasive wood boring beetles in North America. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 159–179

    Chapter  Google Scholar 

  • Hajek AE, Tobin PC (2009) North American eradications of Asian and European gypsy moth. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 71–89

    Chapter  Google Scholar 

  • Hajek AE, McManus ML, Delalibera I Jr (2005) Catalogue of introductions of pathogens and nematodes for classical biological control of insects and mites. USDA, Forest Service., FHTET-2005-05. US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, Radnor, Pennsylvania

  • Hajek AE, McManus ML, Delalibera I Jr (2007) A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biol Control 41:1–13

    Article  Google Scholar 

  • Hall RJ, Hastings A (2007) Minimizing invader impacts: striking the right balance between removal and restoration. J Theor Biol 249:437–444

    Article  PubMed  Google Scholar 

  • Headrick DH, Goegen RD (1994) Issues concerning the eradication or establishment and biological control of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in California. Biol Control 4:412–421

    Article  Google Scholar 

  • Hengeveld R (1989) Dynamics of biological invasions. Chapman and Hall, London

    Google Scholar 

  • Henneman ML, Memmot J (2001) Infiltration of a Hawaiian community by introduced biological control agents. Science 293:1314–1316

    Article  PubMed  CAS  Google Scholar 

  • Herrick OW, Gansner DA (1987) Mortality risks for forest trees threatened with gypsy moth infestation. USDA Forest Service Research Note NE-338

  • Hoddle MS (2004) Restoring balance: using exotic species to control invasive exotic species. Conserv Biol 18:38–49

    Article  Google Scholar 

  • Hokkanen H, Hajek AE (eds) (2003) Environmental impacts of microbial insecticides: need and methods for risk assessment. Kluwer, Dordrecht

    Google Scholar 

  • Hu J, Angeli S, Schuetz S, Luo Y, Hajek AE (2009) Ecology and management of exotic and endemic Asian longhorned beetle (Anoplophora glabripennis). Agric For Entomol 11:359–375

    Article  Google Scholar 

  • Jackson TA (2009) The use of Oryctes virus for control of rhinoceros beetle in the Pacific Islands. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 133–140

    Chapter  Google Scholar 

  • Johnson DM, Liebhold AM, Bjørnstad ON, McManus ML (2005) Circumpolar variation in periodicity and synchrony among gypsy moth populations. J Anim Ecol 74:882–892

    Article  Google Scholar 

  • Johnson DM, Liebhold AM, Tobin PC, Bjørnstad ON (2006) Pulsed invasions of the gypsy moth. Nature 444:361–363

    Article  PubMed  CAS  Google Scholar 

  • Klassen W (1989) Eradication of introduced arthropod pests: theory and historical practice. Misc Publ Entomol Soc Am 73:1–29

    Google Scholar 

  • Knipling EF (1979) The basic principles of insect suppression and management. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Koyama J, Teruya T, Tanaka K (1984) Eradication of the oriental fruit fly (Diptera: Tephritidae) from the Okinawa Islands by a male annihilation method. J Econ Entomol 77:468–472

    Google Scholar 

  • Kuba HT, Kohama H, Kakinohama M, Yamagishi M, Kinjo K, Sokei Y, Nakasone T, Nakamoto Y (1996) The successful eradication programs of the melon fly in Okinawa. In: McPheron B, Steck G (eds) Fruit fly pests: a world assessment of their biology and management. St. Lucie, Delray Beach, pp 534–550

    Google Scholar 

  • Lacey LA, Kaya HK (eds) (2007) Field manual of techniques in invertebrate pathology. Springer, Dordrecht

    Google Scholar 

  • Lard C, Willis DB, Salin V, Robison S (2002) Economic assessments of red imported fire ant on Texas’ urban and agricultural sectors. Southwest Entomol 25:123–137

    Google Scholar 

  • Leung B, Mandrak NE (2007) The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure. Proc R Soc B Biol Sci 274:2603–2609

    Article  Google Scholar 

  • Leung B, Drake JM, Lodge DM (2004) Predicting invasions: propagule pressure and the gravity of Allee effects. Ecology 85:1651–1660

    Article  Google Scholar 

  • Leuschner WA, Young JA, Waldon SA, Ravlin FW (1996) Potential benefits of slowing the gypsy moth’s spread. Southern J Appl For 20:65–73

    Google Scholar 

  • Liebhold AM, Tobin PC (2006) Growth of newly established alien populations: comparison of North American gypsy moth colonies with invasion theory. Popul Ecol 48:253–262

    Article  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408

    Article  PubMed  CAS  Google Scholar 

  • Liebhold AM, Work TT, McCullough DG, Cavey JF (2006) Airline baggage as a pathway for alien insect species invading the United States. Am Entomol 53:48–54

    Google Scholar 

  • Liu H, Bauer LS (2008a) Microbial control of Agrilus planipennis (Coleoptera: Buprestidae) with Beauveria bassiana strain GHA: field applications. Biocontrol Sci Tech 18:565–579

    Article  Google Scholar 

  • Liu H, Bauer LS (2008b) Microbial control of emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae) with Beauveria bassiana strain GHA: greenhouse and field trials. Biol Control 45:124–132

    Article  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, Malden 304 pp

    Google Scholar 

  • Louda SM, Pemberton RW, Johnson MT, Follett PA (2003) Nontarget effects—the achilles’ heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annu Rev Entomol 48:365–396

    Article  PubMed  CAS  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • McClure MS (1990) Role of wind, birds, deer, and humans in the dispersal of hemlock woolly adelgid (Homoptera: Adelgidae). Environ Entomol 19:36–43

    Google Scholar 

  • McCullough DG, Work TT, Cavey JF, Liebhold AM, Marshall D (2006) Interceptions of nonindigenous plant pests at US ports of entry and border crossings over a 17-year period. Biol Invasions 8:611–630

    Article  Google Scholar 

  • Myers JH, Savoie A, van Randen E (1998) Eradication and pest management. Annu Rev Entomol 43:471–491

    Article  PubMed  CAS  Google Scholar 

  • Myers JH, Simberloff D, Kuris AM, Carey JR (2000) Eradication revisited: dealing with exotic species. Trends Ecol Evol 15:316–320

    Article  PubMed  Google Scholar 

  • National Research Council (2002) Predicting invasions of nonindigenous plants and plant pests. National Academy Press, Washington, DC, 194 pp

  • Nielsen C, Wraight SP (2009) Exotic aphid control with pathogens. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 93–113

    Chapter  Google Scholar 

  • Nielsen C, Milgroom MG, Hajek AE (2005) Genetic diversity in the gypsy moth fungal pathogen Entomophaga maimaiga from founder populations in North America and source populations in Asia. Mycol Res 109:941–950

    Article  PubMed  CAS  Google Scholar 

  • Nowak DJ, Pasek JE, Sequeira RA, Crane DE, Mastro VC (2001) Potential effect of Anoplophora glabripennis (Coleoptera: Cerambycidae) on urban trees in the United States. J Econ Entomol 94:116–122

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan M, Brownbridge M (2009) Environmental impacts of microbial control agents for control of invasive pests. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 305–327

    Chapter  Google Scholar 

  • Okubo A (1980) Diffusion and ecological problems: mathematical models. Springer, Berlin

    Google Scholar 

  • Oladunmade MA, Denwat L, Feldmann HU (1986) The eradication of Glossina palpalis palpalis (Robineau Desvoidy) (Diptera: Glossinidae) using traps, insecticide impregnated targets and the sterile insect technique in central Nigeria. Bull Entomol Res 76:2775–2786

    Google Scholar 

  • Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19

    Article  Google Scholar 

  • Pedigo LP, Hutchins SH, Higley LG (1986) Economic injury levels in theory and practice. Annu Rev Entomol 31:341–368

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Poland TM, McCullough DG (2006) Emerald ash borer: invasion of the urban forest and the threat to North America’s ash resource. J For 104:118–124

    Google Scholar 

  • Randall JM (1996) Weed control for the preservation of biological diversity. Weed Technol 10:370–383

    Google Scholar 

  • Reardon R, Dubois N, McLane W (1994) Bacillus thuringiensis for managing gypsy moth: a review. FHM-NC-01-94. US Department of Agriculture, Forest Service, National Center of Forest Health Management, Radnor, Pennsylvania

  • Reardon RC, Podgwaite J, Zerillo R (1996) Gypchek – the gypsy moth nucleopolyhedrosis virus product. FHTET-96-16. US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, Radnor, Pennsylvania

  • Redman AM, Scriber JM (2000) Competition between the gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis: interactions mediated by host plant chemistry, pathogens, and parasitoids. Oecologia 125:218–228

    Article  Google Scholar 

  • Regan TJ, McCarthy MA, Baxter PW, Dane Panetta F, Possingham HP (2006) Optimal eradication: when to stop looking for an invasive plant. Ecol Lett 9:759–766

    Article  PubMed  Google Scholar 

  • Rejmánek M (2000) Invasive plants: approaches and predictions. Austral Ecol 25:497–506

    Google Scholar 

  • Ruiz GM, Rawlings TK, Dobbs FC, Drake LA, Mulladay T, Huq A, Colwell RR (2000) Global spread of microorganisms by ships. Nature 408:49–50

    Article  PubMed  CAS  Google Scholar 

  • Schardt JD (1997) Maintenance control. In: Simberloff D, Schmitz DC, Brown TC (eds) Strangers in paradise: impact and management of nonindigenous species in Florida. Island Press, Washington, DC, pp 229–243

    Google Scholar 

  • Schönherr J (1988) Outbreak characteristics of Lymantriids. In: Wallner W (ed) Proceedings Lymantiidae: a comparison of features of New and Old World tussock moths. USDA Forest Service General Technical Report NE-123, pp 171–181

  • Sharov AA, Liebhold AM (1998a) Bioeconomics of managing the spread of exotic pest species with barrier zones. Ecol Appl 8:833–845

    Google Scholar 

  • Sharov AA, Liebhold AM (1998b) Model of slowing the spread of gypsy moth (Lepidoptera: Lymantriidae) with a barrier zone. Ecol Appl 8:1170–1179

    Article  Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Shigesada N, Kawasaki K, Takeda Y (1995) Modeling stratified diffusion in biological invasions. Am Nat 146:229–251

    Article  Google Scholar 

  • Shimazu M (2009) Use of microbes for control of Monochamus alternatus, vector of the invasive pinewood nematode. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 141–157

    Chapter  Google Scholar 

  • Simberloff D (2002) Today Tiritiri Matangi, tomorrow the world! Are we aiming too low in invasives control? In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. Occasional Paper of the IUCN Survival Commission 27, pp 4–12

  • Simberloff D (2009) We can eliminate invasions or live with them. Successful management projects. Biol Invasions 11:149–157

    Article  Google Scholar 

  • Simberloff D, Gibbons L (2004) Now you see them, now you don’t!. Biol Invasions 6:161–172

    Article  Google Scholar 

  • Simberloff D, Stiling P (1996) How risky is biological control? Ecology 77:1965–1974

    Article  Google Scholar 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218

    PubMed  CAS  Google Scholar 

  • Solter LF, Hajek AE (2009) Control of gypsy moth, Lymantria dispar, in North America since 1878. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 181–212

    Chapter  Google Scholar 

  • Solter LF, Keena M, Cate JR, McManus ML, Hanks LM (2001) Infectivity of four species of nematodes (Rhabditoidea: Steinernematidae, Heterorhabditidae) to the Asian longhorn beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). Biocontrol Sci Technol 11:547–552

    Article  Google Scholar 

  • Speare AT, Colley R (1912) The artificial use of the brown-tail fungus in Massachusetts, with practical suggestions for private experiment, and a brief note on a fungous disease of the gypsy caterpillar. Wright & Potter, Boston

    Google Scholar 

  • Strong DR, Pemberton RW (2000) Biological control of invading species—risk and reform. Science 288:1969–1970

    Article  PubMed  CAS  Google Scholar 

  • Sydnor TD, Bumgardner M, Todd A (2007) The potential economic impacts of emerald ash borer (Agrilus planipennis) on Ohio, US, communities. Arboric Urban For 33:48–54

    Google Scholar 

  • Thorpe K, Reardon R, Tcheslavskaia K, Leonard D, Mastro V (2006) A review of the use of mating disruption to manage gypsy moth, Lymantria dispar (L.). USDA, Forest Service, FHTET-2006-13. US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, Radnor, Pennsylvania

  • Thurber DK, McClain WR, Whitmore RC (1994) Indirect effects of gypsy moth defoliation on nest predation. J Wildl Manag 58:493–500

    Article  Google Scholar 

  • Tobin PC, Blackburn LM (eds) (2007) Slow the spread: A national program to manage the gypsy moth. USDA, Forest Service, General Technical Report NRS–6. U. S. Department of Agriculture, Forest Service, Newtown Square, Pennsylvania

  • Tobin PC, Blackburn LM (2008) Long-distance dispersal of the gypsy moth (Lepidoptera: Lymantriidae) facilitated its initial invasion of Wisconsin. Environ Entomol 37:87–93

    Article  PubMed  Google Scholar 

  • Tobin PC, Liebhold AM, Roberts EA (2007a) Comparison of methods for estimating the spread of a non-indigenous species. J Biogeogr 34:305–312

    Article  Google Scholar 

  • Tobin PC, Whitmire SL, Johnson DM, Bjørnstad ON, Liebhold AM (2007b) Invasion speed is affected by geographic variation in the strength of Allee effects. Ecol Lett 10:36–43

    Article  PubMed  Google Scholar 

  • Tobin PC, Robinet C, Johnson DM, Whitmire SL, Bjørnstad ON, Liebhold AM (2009) The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions. Popul Ecol 51:373–384

    Article  Google Scholar 

  • Tuthill RW, Canada AT, Wilcock K, Etkind PH, O’Dell TM, Shama SK (1984) An epidemiological study of gypsy moth rash. Am J Public Health 74:799–803

    Article  PubMed  CAS  Google Scholar 

  • US Department of Agriculture (USDA) (1995) Gypsy moth management in the United States: a cooperative approach. Final environmental impact statement, volumes 1–5. Washington, DC

  • Veitch CR, Clout MN (eds) (2002) Turning the tide: the eradication of invasive species. Occasional Paper of the IUCN Survival Commission 27, 414 pp

  • Venette RC, Ragsdale DW (2004) Assessing the invasion by soybean aphid (Homoptera: Aphididae): where will it end? Ann Entomol Soc Am 97:219–226

    Article  Google Scholar 

  • Weseloh RM (1998) Possibility for recent origin of the gypsy moth (Lepidoptera: Lymantriidae) fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) in North America. Environ Entomol 27:171–177

    Google Scholar 

  • Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666

    Article  Google Scholar 

  • Work TT, McCullough DG, Cavey JF, Komsa R (2005) Arrival rate of nonindigenous insect species into the United States through foreign trade. Biol Invasions 7:323–332

    Article  Google Scholar 

Download references

Acknowledgments

We thank L. Blackburn for assistance with figures, M. Grambor for assistance with the manuscript and T. Ebata for assistance with providing information. Thought-provoking comments from two anonymous reviewers were also much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann E. Hajek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajek, A.E., Tobin, P.C. Micro-managing arthropod invasions: eradication and control of invasive arthropods with microbes. Biol Invasions 12, 2895–2912 (2010). https://doi.org/10.1007/s10530-010-9735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9735-6

Keywords

Navigation