Skip to main content
Log in

The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions

  • Special Feature: Review
  • Allee Effects: Mating and Invasion
  • Published:
Population Ecology

Abstract

Allee effects have been applied historically in efforts to understand the low-density population dynamics of rare and endangered species. Many biological invasions likewise experience the phenomenon of decreasing population growth rates at low population densities because most founding populations of introduced nonnative species occur at low densities. In range expansion of established species, the initial colonizers of habitat beyond the organism’s current range are usually at low density, and thus could be subject to Allee dynamics. There has been consistent empirical and theoretical evidence demonstrating, and in some cases quantifying, the role of Allee dynamics in the gypsy moth, Lymantria dispar (L.), invasion of North America. In this review, we examine the potential causes of the Allee effect in the gypsy moth and highlight the importance of mate-finding failure as a primary mechanism behind an Allee effect, while the degree to which generalist predators induce an Allee effect remains unclear. We then explore the role of Allee effects in the establishment and spread dynamics of the gypsy moth system, which conceptually could serve as a model system for understanding how Allee effects manifest themselves in the dynamics of biological invasions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allee WC (1932) Animal aggregations: a study in general sociology. University of Chicago Press, Chicago

    Google Scholar 

  • Andow DA, Kareiva PM, Levin SA, Okubo A (1990) Spread of invading organisms. Landscape Ecol 4:177–188. doi:10.1007/BF00132860

    Article  Google Scholar 

  • Barbosa P, Greenblatt J (1979) Suitability, digestibility and assimilation of various host plants of the gypsy moth, Lymantria dispar L. Oecologia 43:111–119. doi:10.1007/BF00346676

    Article  Google Scholar 

  • Barbosa P, Gross P, Provan GJ, Stermitz FR (1990) Allelochemicals in foliage of unfavored tree hosts of the gypsy moth, Lymantria dispar L. J Chem Ecol 16:1731–1738. doi:10.1007/BF01014104

    Article  CAS  Google Scholar 

  • Berec L, Angulo E, Courchamp F (2007) Multiple Allee effects and population management. Trends Ecol Evol 22:185–191. doi:10.1016/j.tree.2006.12.002

    Article  PubMed  Google Scholar 

  • Beroza M, Knipling EF (1972) Gypsy moth control with the sex attractant pheromone. Science 177:19–27. doi:10.1126/science.177.4043.19

    Article  PubMed  CAS  Google Scholar 

  • Bess HA, Spurr SH, Littlefield EW (1947) Forest site conditions and the gypsy moth. Harv For Bull 22

  • Bierl BA, Beroza M, Collier CW (1970) Potent sex attractant of the gypsy moth: its isolation, identification and synthesis. Science 170:87–89. doi:10.1126/science.170.3953.87

    Article  PubMed  CAS  Google Scholar 

  • Brockerhoff EG, Bain J, Kimberley M, Knížek M (2006) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J Res 36:289–298. doi:10.1139/x05-250

    Article  Google Scholar 

  • Burgess AF (1917) Suppression of the gipsy [sic] and brown-tail moths and its value to states not infested. Yearbook US Dept Agric for the Year 1916, Washington, DC

  • Burgess AF (1930) The gipsy [sic] moth and the brown-tail moth. United States Department of Agriculture Farmers’ Bulletin 1623

  • Burgess AF, Crossman SS (1929) Imported insect enemies of the gipsy [sic] moth and the brown-tail moth. US Dept Agric Tech Bull 86, Washington, DC

  • Calabrese JM, Fagan WF (2004) Lost in time, lonely, and single: reproductive asynchrony and the Allee effect. Am Nat 164:25–37. doi:10.1086/421443

    Article  PubMed  Google Scholar 

  • Campbell RW (1967) The analysis of numerical change in gypsy moth populations. For Sci Monogr 15:1–33

    Google Scholar 

  • Campbell RW, Sloan RJ (1977) Forest stand responses to defoliation by the gypsy moth. For Sci Monogr 19:1–34

    Google Scholar 

  • Campbell RW, Sloan RJ, Biazak CE (1977) Sources of mortality among late instar gypsy moth (Lepidoptera : Lymantriidae) larvae in sparse populations. Environ Entomol 6:865–871

    Google Scholar 

  • Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14:405–410. doi:10.1016/S0169-5347(99)01683-3

    Article  PubMed  Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  • Dahlsten DL, Garcia R, Lorraine H (1989) Eradication as a pest management tool: concepts and contexts. In: Dahlsten DL, Garcia R (eds) Eradication of exotic pests. Yale University Press, New Haven, pp 3–15

    Google Scholar 

  • Dennis B (1989) Allee effects: population growth, critical density, and the chance of extinction. Nat Resour Model 3:481–538

    Google Scholar 

  • Doane CC, McManus ME (1981) The gypsy moth: Research toward integrated pest management. US Dept Agric For Serv Gen Tech Bull 1584

  • Dreistadt SH (1983) An assessment of gypsy moth eradication attempts in Michigan (Lepidoptera: Lymantriidae). Great Lk Entomol 16:143–148

    Google Scholar 

  • Dwyer G, Dushoff J, Yee SH (2004) The combined effects of pathogens and predators on insect outbreaks. Nature 430:341–345. doi:10.1038/nature02569

    Article  PubMed  CAS  Google Scholar 

  • Eisner T, Johnessee JS, Carrel J, Hendry LB, Meinwald J (1974) Defensive use by an insect of a plant resin. Science 184:996–999. doi:10.1126/science.184.4140.996

    Article  PubMed  CAS  Google Scholar 

  • Elkinton JS, Cardé RT (1988) Effects of intertrap distance and wind direction on the interaction of gypsy moth (Lepidoptera: Lymantriidae) pheromone-baited traps. Environ Entomol 17:764–769

    Google Scholar 

  • Elkinton JS, Liebhold AM (1990) Population dynamics of gypsy moth in North America. Annu Rev Entomol 35:571–596

    Google Scholar 

  • Elkinton JS, Healy WM, Buonaccorsi JP, Boettner GH, Hazzard A, Liebhold AM, Smith HR (1996) Interactions among gypsy moths, white-footed mice, and acorns. Ecology 77:2332–2342. doi:10.2307/2265735

    Article  Google Scholar 

  • Elkinton JS, Liebhold AM, Muzika RM (2004) Effects of alternative prey on predation by small mammals on gypsy moth pupae. Popul Ecol 46:171–178. doi:10.1007/s10144-004-0175-y

    Article  Google Scholar 

  • Forbush EH, Fernald CH (1896) The gypsy moth. Wright and Potter, Boston, MA

    Google Scholar 

  • Gansner DA, Herrick OW (1987) Estimating the benefits of gypsy moth control on timberland. US Dept Agric For Serv Res Note NE-337

  • Gansner DA, Herrick OW, White WB (1978) Economic analysis of the gypsy moth problem in the Northeast. IV. Forest stand hazard ratings for gypsy moth. US Dept Agric For Serv Res Paper NE-410

  • Gascoigne JC, Lipcius RN (2004) Allee effects driven by predation. J Appl Ecol 41:801–810. doi:10.1111/j.0021-8901.2004.00944.x

    Article  Google Scholar 

  • Gould JR, Elkinton JS, Wallner WE (1990) Density-dependent suppression of experimentally created gypsy moth, Lymantria dispar (Lepidoptera, Lymantriidae), populations by natural enemies. J Anim Ecol 59:213–233. doi:10.2307/5169

    Article  Google Scholar 

  • Gray RH, Lorimer CG, Tobin PC, Raffa KF (2008) Pre-outbreak dynamics of a recently established invasive herbivore: Roles of natural enemies and habitat structure in stage-specific performance of gypsy moth (Lepidoptera: Lymantriidae) populations in northeastern Wisconsin. Environ Entomol 37:1174–1184. doi:10.1603/0046-225X(2008)37[1174:PDOARE]2.0.CO;2

    Article  Google Scholar 

  • Gypsy Moth Digest (2008) USDA Forest Service, State and Private Forestry, Morgantown. http://na.fs.fed.us/fhp/gm/

  • Haack RA (2001) Intercepted scolytidae (Coleoptera) at US ports of entry: 1985–2000. Integr Pest Manage Rev 6:253–282. doi:10.1023/A:1025715200538

    Article  Google Scholar 

  • Hajek AE (1999) Pathology and epizootiology of Entomophaga maimaiga infections in forest Lepidoptera. Microbiol Mol Biol Rev 63:814–835

    PubMed  CAS  Google Scholar 

  • Hajek AE, Humber RA, Elkinton JS (1995) The mysterious origin of Entomophaga maimaiga in North America. Am Entomol 41:31–42

    Google Scholar 

  • Harrison RG, Wintermeyer SF, Odell TM (1983) Patterns of genetic variation within and among gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), populations. Ann Entomol Soc Am 76:652–656

    Google Scholar 

  • Hastings FL, Hain FP, Odell TM (2002a) A survey of parasitoids and other organisms affecting gypsy moth (Lepidoptera: Lymantria dispar L.) along the leading edge of its southward movement. J Entomol Sci 37:207–209

    Google Scholar 

  • Hastings FL, Hain FP, Smith HR, Cook SP, Monahan JF (2002b) Predation of gypsy moth (Lepidoptera: Lymantriidae) pupae in three ecosystems along the southern edge of infestation. Environ Entomol 31:668–675

    Article  Google Scholar 

  • Hengeveld R (1989) Dynamics of biological invasions. Chapman and Hall, London

    Google Scholar 

  • Herrick OW (1981) Forest pest management economics—application to the gypsy moth. For Sci 27:128–138

    Google Scholar 

  • Herrick OW, Gansner DA (1987) Mortality risks for forest trees threatened with gypsy moth infestation. US Dept Agric For Serv Res Note NE-338

  • Hopper KR, Roush RT (1993) Mate finding, dispersal, number released, and the success of biological control introductions. Ecol Entomol 18:321–331. doi:10.1111/j.1365-2311.1993.tb01108.x

    Article  Google Scholar 

  • Howard LO, Fiske WF (1911) The importation into the United States of the parasites of the gipsy [sic] moth and the brown-tail moth. US Dept Agric Bur Entomol Bull 91

  • Johnson DM, Liebhold AM, Tobin PC, Bjørnstad ON (2006) Allee effects and pulsed invasion by the gypsy moth. Nature 444:361–363. doi:10.1038/nature05242

    Article  PubMed  CAS  Google Scholar 

  • Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO (1998) Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279:1023–1026. doi:10.1126/science.279.5353.1023

    Article  PubMed  CAS  Google Scholar 

  • Keena MA, Grinberg PS, Wallner WE (2007) Inheritance of female flight in Lymantria dispar (Lepidoptera: Lymantriidae). Environ Entomol 36:484–494. doi:10.1603/0046-225X(2007)36[484:IOFFIL]2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Keitt TH, Lewis MA, Holt RD (2001) Allee effects, invasion pinning, and species borders. Am Nat 157:203–216. doi:10.1086/318633

    Article  PubMed  CAS  Google Scholar 

  • Kinlan BP, Hastings A (2005) Rates of population spread and geographic expansion. What exotic species tell us. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions insights into ecology, evolution and biogeography. Sinauer and Associates, Sunderland, pp 381–419

    Google Scholar 

  • Kirkland AH (1906) First annual report of the superintendent for suppressing the gypsy and brown-tail moths. Commonwealth of Massachusetts, Public Document No. 73

  • Koshio C (1996) Pre-ovipositional behavior of the female gypsy moth, Lymantria dispar L. (Lepidoptera, Lymantriidae). Appl Entomol Zool (Jpn) 31:1–10

    Google Scholar 

  • Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042. doi:10.2307/2265698

    Article  Google Scholar 

  • Knipling EF (1966) Some basic principles of insect population suppression and management. Bull Entomol Soc Am 12:7–15

    Google Scholar 

  • Knipling EF (1979) The basic principles of insect population suppression and management. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol (Kyoto) 40:259–269. doi:10.1007/BF02763457

    Article  Google Scholar 

  • Lechowicz MJ, Jobin L (1983) Estimating the susceptibility of tree species to attack by the gypsy moth, Lymantria dispar. Ecol Entomol 8:171–183. doi:10.1111/j.1365-2311.1983.tb00496.x

    Article  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. doi:10.1016/S0169-5347(02)02554-5

    Article  Google Scholar 

  • Leuschner WA, Young JA, Walden SA, Ravlin FW (1996) Potential benefits of slowing the gypsy moth’s spread. S J Appl For 20:65–73

    Google Scholar 

  • Lewis MA, Kareiva P (1993) Allee dynamics and the spread of invading organisms. Theor Popul Biol 43:141–158. doi:10.1006/tpbi.1993.1007

    Article  Google Scholar 

  • Liebhold AM, Bascompte J (2003) The Allee effect, stochastic dynamics and the eradication of alien species. Ecol Lett 6:133–140. doi:10.1046/j.1461-0248.2003.00405.x

    Article  Google Scholar 

  • Liebhold AM, Tobin PC (2006) Growth of newly established alien populations: comparison of North American gypsy moth colonies with invasion theory. Popul Ecol 48:253–262. doi:10.1007/s10144-006-0014-4

    Article  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408. doi:10.1146/annurev.ento.52.110405.091401

    Article  PubMed  CAS  Google Scholar 

  • Liebhold AM, Halverson JA, Elmes GA (1992) Gypsy moth invasion in North America: a quantitative analysis. J Biogeogr 19:513–520. doi:10.2307/2845770

    Article  Google Scholar 

  • Liebhold AM, Gottschalk KW, Muzika RM, Montgomery ME, Young R, O’Day K, Kelley B (1995a) Suitability of North American tree species to the gypsy moth: a summary of field and laboratory tests. US Dept Agric For Serv Gen Tech Rep NE-211

  • Liebhold AM, Macdonald WL, Bergdahl D, Mastro VC (1995b) Invasion by exotic forest pests: a threat to forest ecosystems. For Sci Monogr 30:1–49

    Google Scholar 

  • Liebhold AM, Mastro VC, Schaefer PW (1989) Learning from the legacy of Léopold Trouvelot. Bull Entomol Soc Am 35:20–22

    Google Scholar 

  • Liebhold AM, Raffa KF, Diss A (2005) Forest type affects predation on gypsy moth pupae in Wisconsin. Agric For Entomol 7:179–185. doi:10.1111/j.1461-9555.2005.00256.x

    Article  Google Scholar 

  • Liebhold AM, Work TT, McCullough DG, Cavey JF (2006) Airline baggage as a pathway for alien insect species invading the United States. Am Entomol 53:48–54

    Google Scholar 

  • Liebhold AM, Turcáni M, Kamata N (2008) Inference of adult female dispersal from the distribution of gypsy moth egg masses in a Japanese city. Agric For Entomol 10:69–73

    Google Scholar 

  • Lockwood J, Hoopes M, Marchetti M (2007) Invasion ecology. Blackwell, Malden

    Google Scholar 

  • Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518. doi:10.1086/285812

    Article  Google Scholar 

  • Mattson WJ, Vanhanen H, Veteli T, Sivonen S, Niemelä P (2007) Few immigrant phytophagous insects on woody plants in Europe: legacy of the European crucible? Biol Inv 9:957–974. doi:10.1007/s10530-007-9096-y

    Article  Google Scholar 

  • McCay RE, White WB (1973) Economic analysis of the gypsy moth problem in the Northeast. I. Applied to commercial stands. US Dept Agric For Serv Res Paper NE-275

  • McCullough DG, Work TT, Cavey JF, Liebhold AM, Marshall D (2006) Interceptions of nonindigenous plant pests at US ports of entry and border crossings over a 17-year period. Biol Inv 8:1464–1573. doi:10.1007/s10530-005-1798-4

    Article  Google Scholar 

  • Moeller GH, Marler RL, McCay RE, White WB (1977) Economic analysis of the gypsy moth problem in the Northeast. III. Impacts on homeowners and managers of recreation areas. US Dept Agric For Serv Res Paper NE-360

  • Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451. doi:10.1073/pnas.091093398

    Article  PubMed  CAS  Google Scholar 

  • Myers JH, Savoie A, Van Randen E (1998) Eradication and pest management. Annu Rev Entomol 43:471–491. doi:10.1146/annurev.ento.43.1.471

    Article  PubMed  CAS  Google Scholar 

  • Niemelä P, Mattson WJ (1996) Invasion of North American forests by European Phytophagous insects. Bioscience 46:741–753. doi:10.2307/1312850

    Article  Google Scholar 

  • Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Inv 1:3–19. doi:10.1023/A:1010034312781

    Article  Google Scholar 

  • Payne BR, White WB, McCay RE, McNichols RR (1973) Economic analysis of the gypsy moth problem in the Northeast. II. Applied to residential property. US Dept Agric For Serv Res Paper NE-285

  • Perry CC (1955) Gypsy moth appraisal program and proposed plan to prevent spread of the moths. US Dept Agric Tech Bull 1124

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien invasive species in the United States. Ecol Econ 52:273–288. doi:10.1016/j.ecolecon.2004.07.013

    Article  Google Scholar 

  • Raffa KF, Berryman AA (1983) The role of host plant resistance in the colonization behavior and ecology of bark beetles. Ecol Monogr 53:27–49. doi:10.2307/1942586

    Article  Google Scholar 

  • Redman AM, Scriber JM (2000) Competition between the gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis: interactions mediated by host plant chemistry, pathogens, and parasitoids. Oecologia 125:218–228. doi:10.1007/s004420000444

    Article  Google Scholar 

  • Reineke A, Zebitz CPW (1998) Flight ability of gypsy moth females (Lymantria dispar L.) (Lep., Lymantriidae): a behavioural feature characterizing moths from Asia? J Appl Entomol 122:307–310

    Article  Google Scholar 

  • Riley CV, Vasey G (1870) Imported insects and native American insects. Am Entomol 2:110–112

    Google Scholar 

  • Robinet C, Liebhold AM, Gray D (2007) Variation in developmental time affects mating success and Allee effects. Oikos 116:1227–1237. doi:10.1111/j.0030-1299.2007.15891.x

    Article  Google Scholar 

  • Robinet C, Lance DR, Thorpe KW, Onufrieva KS, Tobin PC, Liebhold AM (2008) Dispersion in time and space affect mating success and Allee effects in invading gypsy moth populations. J Anim Ecol 77:966–973. doi:10.1111/j.1365-2656.2008.01417.x

    Article  PubMed  CAS  Google Scholar 

  • Rossiter MC, Schultz JC, Baldwin IT (1988) Relationships among defoliation, leaf phenolics, and gypsy moth performance. Ecology 69:267–277. doi:10.2307/1943182

    Article  CAS  Google Scholar 

  • Sharov AA, Liebhold AM (1998) Model of slowing the spread of the gypsy moth (Lepidoptera: Lymantriidae) with a barrier zone. Ecol Appl 8:1170–1179. doi:10.1890/1051-0761(1998)008[1170:MOSTSO]2.0.CO;2

    Article  Google Scholar 

  • Sharov AA, Liebhold AM, Ravlin FW (1995) Prediction of Gypsy Moth (Lepidoptera: Lymantriidae) mating success from pheromone trap counts. Environ Entomol 24:1239–1244

    Google Scholar 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218

    PubMed  CAS  Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Shigesada N, Kawasaki K, Takeda Y (1995) Modeling stratified diffusion in biological invasions. Am Nat 146:229–251. doi:10.1086/285796

    Article  Google Scholar 

  • South AB, Kenward RE (2001) Mate finding, dispersal distances and population growth in invading species: a spatially explicit model. Oikos 95:53–58. doi:10.1034/j.1600-0706.2001.950106.x

    Article  Google Scholar 

  • Stephens PA, Sutherland WJ, Freckleton R (1999) What is the Allee effect? Oikos 87:185–190. doi:10.2307/3547011

    Article  Google Scholar 

  • Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8:895–908. doi:10.1111/j.1461-0248.2005.00787.x

    Article  Google Scholar 

  • Tcheslavskaia K, Brewster CC, Sharov AA (2002) Mating success of gypsy moth (Lepidoptera: Lymantriidae) females in southern Wisconsin. Great Lakes Entomol 35:1–7

    Google Scholar 

  • Tcheslavskaia KS, Thorpe KW, Brewster CC, Sharov AA, Leonard DS, Reardon RC, Mastro VC, Sellers P, Roberts EA (2005) Optimization of pheromone dosage for gypsy moth mating disruption. Entomol Exp Appl 115:355–361. doi:10.1111/j.1570-7458.2005.00266.x

    Article  CAS  Google Scholar 

  • Thorpe KW, Leonard DS, Mastro VC, McLane W, Reardon RC, Sellers P, Webb RE, Talley SE (2000) Effectiveness of gypsy moth mating disruption from aerial applications of plastic laminate flakes with and without a sticking agent. Agric For Entomol 2:225–231. doi:10.1046/j.1461-9563.2000.00069.x

    Article  Google Scholar 

  • Thorpe K, Reardon R, Tcheslavskaia K, Leonard D, Mastro V (2006) A review of the use of mating disruption to manage gypsy moth, Lymantria dispar (L.). US Dept Agric For Health Tech Ent Team 2006-13

  • Thurber DK, McClain WR, Whitmore RC (1994) Indirect effects of gypsy moth defoliation on nest predation. J Wildl Manage 58:493–500. doi:10.2307/3809321

    Article  Google Scholar 

  • Tobin PC, Blackburn LM (2007) Slow the Spread: a national program to manage the gypsy moth. US Dept Agric For Serv Gen Tech Rep NRS-6

  • Tobin PC, Blackburn LM (2008) Long-distance dispersal of the gypsy moth (Lepidoptera: Lymantriidae) facilitated its initial invasion of Wisconsin. Environ Entomol 37:87–93. doi:10.1603/0046-225X(2008)37[87:LDOTGM]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Tobin PC, Liebhold AM, Roberts EA (2007a) Comparison of methods for estimating the spread of a non-indigenous species. J Biogeogr 34:305–312. doi:10.1111/j.1365-2699.2006.01600.x

    Article  Google Scholar 

  • Tobin PC, Whitmire SL, Johnson DM, Bjørnstad ON, Liebhold AM (2007b) Invasion speed is affected by geographic variation in the strength of Allee effects. Ecol Lett 10:36–43. doi:10.1111/j.1461-0248.2006.00991.x

    Article  PubMed  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Scientist 84:468–478

    Google Scholar 

  • Werner SM, Raffa KF (2000) Effects of forest management practices on the diversity of ground-occurring beetles in mixed northern hardwood forests of the Great Lakes Region. For Ecol Manage 139:135–155

    Article  Google Scholar 

  • Whitmire SL, Tobin PC (2006) Persistence of invading gypsy moth colonies in the United States. Oecologia 147:230–237. doi:10.1007/s00442-005-0271-5

    Article  PubMed  Google Scholar 

  • Work TT, McCullough DG, Cavey JF, Komsa R (2005) Arrival rate of nonindigenous insect species into the United States through foreign trade. Biol Inv 7:323–332. doi:10.1007/s10530-004-1663-x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Laura Blackburn for assistance in manuscript preparation, and Caz Taylor and Takehiko Yamanaka for their helpful comments. We also acknowledge funding from the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service Grants to O.N.B, A.M.L., and P.C.T. (2006), and D.M.J. (2006); EU Projects ALARM GOCE-CT-2003-506675 (FP6 Integrated Project, Assessing large-scale environmental risks with tested methods) and PRATIQUE KBBE-2007-212459 (FP7 Enhancements of Pest Risk Analysis Techniques) to C.R.; and a US Forest Service Research Joint Adventure Agreement to S.L.W. (2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Tobin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobin, P.C., Robinet, C., Johnson, D.M. et al. The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions. Popul Ecol 51, 373–384 (2009). https://doi.org/10.1007/s10144-009-0144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-009-0144-6

Keywords

Navigation