Skip to main content
Log in

N-Glycosylation of an IgG antibody secreted by Nicotiana tabacum BY-2 cells can be modulated through co-expression of human β-1,4-galactosyltransferase

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Nicotiana tabacum BY-2 suspension cells have several advantages that make them suitable for the production of full-size monoclonal antibodies which can be purified directly from the culture medium. Carbohydrate characterization of an antibody (Lo-BM2) expressed in N. tabacum BY-2 cells showed that the purified Lo-BM2 displays N-glycan homogeneity with a high proportion (>70%) of the complex GnGnXF glycoform. The stable co-expression of a human β-1,4-galactosyltransferase targeted to different Golgi sub-compartments altered Lo-BM2N-glycosylation and resulted in the production of an antibody that exhibited either hybrid structures containing a low abundance of the plant epitopes (α-1,3-fucose and β-1,2-xylose), or a large amount of galactose-extended N-glycan structures. These results demonstrate the suitability of stable N-glycoengineered N. tabacum BY-2 cell lines for the production of human-like antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 98(5):2899–2904. doi:10.1073/pnas.031419998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker H, Rouwendal GJA, Karnoup AS, Florack DEA, Stoopen GM, Helsper JPFG, van Ree R, van Die I, Bosch D (2006) An antibody produced in tobacco expressing a hybrid β-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc Natl Acad Sci 103(20):7577–7582. doi:10.1073/pnas.0600879103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch D, Castilho A, Loos A, Schots A, Steinkellner H (2013) N-glycosylation of plant-produced recombinant proteins. Curr Pharm Des 19(31):5503–5512. doi:10.2174/1381612811319310006

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14(6):1293–1309. doi:10.1105/tpc.001586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiyama K, Misaki R, Katsura A, Tanaka T, Furukawa A, Omasa T, Seki T (2006) N-linked glycan structures of a mouse monoclonal antibody produced from tobacco BY2 suspension-cultured cells. J Biosci Bioeng 101(3):212–218. doi:10.1263/jbb.101.212

    Article  CAS  PubMed  Google Scholar 

  • Fujiyama K, Furukawa A, Katsura A, Misaki R, Omasa T, Seki T (2007) Production of mouse monoclonal antibody with galactose-extended sugar chain by suspension cultured tobacco BY2 cells expressing human β(1,4)-galactosyltransferase. Biochem Biophys Res Commun 358(1):85–91. doi:10.1016/j.bbrc.2007.04.054

    Article  CAS  PubMed  Google Scholar 

  • Goderis IJWM, De Bolle MFC, Francois IEJA, Wouters PFJ, Broekaert WF, Cammue BPA (2002) A set of modular plant transformation vectors allowing flexible insertion of up to six expression units. Plant Mol Biol 50(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Hesselink T, Rouwendal GJA, Henquet MGL, Florack DEA, Helsper JPFG, Bosch D (2014) Expression of natural human β1,4-GalT1 variants and of non-mammalian homologues in plants leads to differences in galactosylation of N-glycans. Transgenic Res 23(5):717–728. doi:10.1007/s11248-014-9806-z

    Article  CAS  PubMed  Google Scholar 

  • Holland T, Sack M, Rademacher T, Schmale K, Altmann F, Stadlmann J, Fischer R, Hellwig S (2010) Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Biotechnol Bioeng 107(2):278–289. doi:10.1002/bit.22800

    Article  CAS  PubMed  Google Scholar 

  • Jacobs PP, Callewaert N (2009) N-glycosylation engineering of biopharmaceutical expression systems. Curr Mol Med 9(7):774–800. doi:10.2174/156652409789105552

    Article  CAS  PubMed  Google Scholar 

  • Kajiura H, Misaki R, Fujiyama K, Seki T (2011) Stable coexpression of two human sialylation enzymes in plant suspension-cultured tobacco cells. J Biosci Bioeng 111(4):471–477. doi:10.1016/j.jbiosc.2010.11.018

    Article  CAS  PubMed  Google Scholar 

  • Kallolimath S, Steinkellner H, Hiatt A (2015) Glycosylation of plant produced human antibodies. Hum Antibodies 23(3–4):45–48. doi:10.3233/HAB-150283

    Article  CAS  PubMed  Google Scholar 

  • Kang SH, Jung HS, Lee SJ, Park CI, Lim SM, Park H, Kim BS, Na KH, Han GJ, Bae JW, Park HJ, Bang KC, Park BT, Hwang HS, Jung IS, Kim JI, Oh DB, Kim DI, Yagi H, Kato K, Kim DK, Kim HH (2015) Glycan structure and serum half-life of recombinant CTLA4Ig, an immunosuppressive agent, expressed in suspension-cultured rice cells with coexpression of human β1,4-galactosyltransferase and human CTLA4Ig. Glycoconj J 32(3–4):161–172. doi:10.1007/s10719-015-9590-x

    Article  CAS  PubMed  Google Scholar 

  • Karg SR, Frey AD, Kallio PT (2010) Reduction of N-linked xylose and fucose by expression of rat β1,4-N-acetylglucosaminyltransferase III in tobacco BY-2 cells depends on Golgi enzyme localization domain and genetic elements used for expression. J Biotechnol 146(1–2):54–65. doi:10.1016/j.jbiotec.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  • Loos A, Steinkellner H (2012) IgG-Fc glycoengineering in non-mammalian expression hosts. Arch Biochem Biophys 526(2):167–173. doi:10.1016/j.abb.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  • Magy B, Tollet J, Laterre R, Boutry M, Navarre C (2014) Accumulation of secreted antibodies in plant cell cultures varies according to the isotype, host species and culture conditions. Plant Biotechnol J 12(4):457–467. doi:10.1111/pbi.12152

    Article  CAS  PubMed  Google Scholar 

  • Mercx S, Tollet J, Magy B, Navarre C, Boutry M (2016) Gene inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells. Front Plant Sci. doi:10.3389/fpls.2016.00040

    PubMed  PubMed Central  Google Scholar 

  • Misaki R, Kimura Y, Fujiyama K, Seki T (2001) Glycoproteins secreted from suspension-cultured tobacco BY2 cells have distinct glycan structures from intracellular glycoproteins. Biosci Biotechnol Biochem 65(11):2482–2488. doi:10.1271/bbb.65.2482

    Article  CAS  PubMed  Google Scholar 

  • Misaki R, Kimura Y, Palacpac NQ, Yoshida S, Fujiyama K, Seki T (2003) Plant cultured cells expressing human β1,4-galactosyltransferase secrete glycoproteins with galactose-extended N-linked glycans. Glycobiology 13(3):199–205. doi:10.1093/glycob/cwg021

    Article  CAS  PubMed  Google Scholar 

  • Misaki R, Fujiyama K, Seki T (2006) Expression of human CMP-N-acetylneuraminic acid synthetase and CMP-sialic acid transporter in tobacco suspension-cultured cell. Biochem Biophys Res Commun 339(4):1184–1189. doi:10.1016/j.bbrc.2005.11.130

    Article  CAS  PubMed  Google Scholar 

  • Morsomme P, Dambly S, Maudoux O, Boutry M (1998) Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region. J Biol Chem 273(52):34837–34842. doi:10.1074/jbc.273.52.34837

    Article  CAS  PubMed  Google Scholar 

  • Navarre C, Delannoy M, Lefebvre B, Nader J, Vanham D, Boutry M (2006) Expression and secretion of recombinant outer-surface protein A from the lyme disease agent, Borrelia burgdorferi, in Nicotiana tabacum suspension cells. Transgenic Res 15(3):325–335

    Article  CAS  PubMed  Google Scholar 

  • Palacpac NQ, Yoshida S, Sakai H, Kimura Y, Fujiyama K, Yoshida T, Seki T (1999) Stable expression of human β1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc Natl Acad Sci USA 96(8):4692–4697. doi:10.1073/pnas.96.8.4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven N, Rasche S, Kuehn C, Anderlei T, Klöckner W, Schuster F, Henquet M, Bosch D, Büchs J, Fischer R, Schillberg S (2015) Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-l orbitally-shaken disposable bioreactor. Biotechnol Bioeng 112(2):308–321. doi:10.1002/bit.25352

    Article  CAS  PubMed  Google Scholar 

  • Reusch D, Tejada ML (2015) Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25(12):1325–1334. doi:10.1093/glycob/cwv065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saint-Jore CM, Evins J, Batoko H, Brandizzi F, Moore I, Hawes C (2002) Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J 29(5):661–678. doi:10.1046/j.0960-7412.2002.01252.x

    Article  CAS  PubMed  Google Scholar 

  • Santos RB, Abranches R, Fischer R, Sack M, Holland T (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci. doi:10.3389/fpls.2016.00297

    Google Scholar 

  • Schneider J, Castilho A, Pabst M, Altmann F, Gruber C, Strasser R, Gattinger P, Seifert GJ, Steinkellner H (2015) Characterization of plants expressing the human β1,4-galactosyltrasferase gene. Plant Physiol Biochem 92:39–47. doi:10.1016/j.plaphy.2015.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoberer J, Strasser R (2011) Sub-compartmental organization of golgi-resident N-glycan processing enzymes in plants. Mol Plant 4(2):220–228. doi:10.1093/mp/ssq082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoberer J, Liebminger E, Botchway SW, Strasser R, Hawes C (2013) Time-resolved fluorescence imaging reveals differential interactions of N-glycan processing enzymes across the golgi stack in planta. Plant Physiol 161(4):1737–1754. doi:10.1104/pp.112.210757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoberer J, Liebminger E, Vavra U, Veit C, Castilho A, Dicker M, Maresch D, Altmann F, Hawes C, Botchway SW, Strasser R (2014) The transmembrane domain of N-acetylglucosaminyltransferase i is the key determinant for its Golgi subcompartmentation. Plant J 80(5):809–822. doi:10.1111/tpj.12671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser R (2016) Plant protein glycosylation. Glycobiology. doi:10.1093/glycob/cww023

    PubMed  PubMed Central  Google Scholar 

  • Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L, Steinkellner H (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous β1,4-galactosylated N-glycan profile. J Biol Chem 284(31):20479–20485. doi:10.1074/jbc.M109.014126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser R, Altmann F, Steinkellner H (2014) Controlled glycosylation of plant-produced recombinant proteins. Curr Opin Biotechnol 30:95–100. doi:10.1016/j.copbio.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  • van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases agrobacterium-mediated plant transformation. Plant Mol Biol 43(4):495–502

    Article  PubMed  Google Scholar 

  • Vézina LP, Faye L, Lerouge P, D’Aoust MA, Marquet-Blouin E, Burel C, Lavoie PO, Bardor M, Gomord V (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7(5):442–455. doi:10.1111/j.1467-7652.2009.00414.x

    Article  PubMed  Google Scholar 

  • Yin B, Gao T, Zheng N, Li Y, Tang S, Liang L, Xie Q (2011) Generation of glyco-engineered BY2 cell lines with decreased expression of plant-specific glycoepitopes. Protein Cell 2(1):41–47. doi:10.1007/s13238-011-1007-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Service Public de Wallonie (WBHealth 1318062) and the Belgian Fund for Scientific Research. Mass Spectrometry facilities were funded by the European Fund for Economic and Regional Development (GIGA-Proteomics facility instrumentation), the Belgian Fund for Scientific Research and the Walloon Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Navarre.

Additional information

Catherine Navarre and Nicolas Smargiasso have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarre, C., Smargiasso, N., Duvivier, L. et al. N-Glycosylation of an IgG antibody secreted by Nicotiana tabacum BY-2 cells can be modulated through co-expression of human β-1,4-galactosyltransferase. Transgenic Res 26, 375–384 (2017). https://doi.org/10.1007/s11248-017-0013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-017-0013-6

Keywords

Navigation