Skip to main content
Log in

Functional identification and regulatory analysis of Δ6-fatty acid desaturase from the oleaginous fungus Mucor sp. EIM-10

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

An Erratum to this article was published on 10 January 2017

Abstract

Objectives

To enlarge the diversity of the desaturases associated with PUFA biosynthesis and to better understand the transcriptional regulation of desaturases, a Δ6-desaturase gene (Md6) from Mucor sp. and its 5′-upstream sequence was functionally identified in Saccharomyces cerevisiae.

Results

Expression of the Δ6-fatty acid desaturase (Md6) in S. cerevisiae showed that Md6 could convert linolenic acid to γ-linolenic acid. Computational analysis of the promoter of Md6 suggested it contains several eukaryotic fundamental transcription regulatory elements. In vivo functional analysis of the promoter showed the 5′-upstream sequence of Md6 could initiate expression of GFP and Md6 itself in S. cerevisiae. A series deletion analysis of the promoter suggested that sequence between −919 to −784 bp (relative to start site) named as eMd6 is the key factor for high activity of Δ6-desaturase. The activity of Δ6-desaturase was increased by 2.8-fold and 2.5-fold when the eMd6 sequence was placed upstream of −434 with forward or reverse orientations respectively.

Conclusion

To our best knowledge, the native promoter of Md6 from Mucor is the strongest promoter for Δ6-desaturase reported so far and the sequence between −919 to −784 bp is an enhancer for Δ6-desaturase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cho HP, Nakamura MT, Clarke SD (1999) Cloning, expression, and nutritional regulation of the mammalian Δ-6 desaturase. J Biol Chem 274:471–477

    Article  CAS  PubMed  Google Scholar 

  • di Martino O et al (2015) Regulation of stearoyl coenzyme: a desaturase 1 gene promoter in bovine mammary cells. Anim Biotechnol 26:251–259

    Article  PubMed  Google Scholar 

  • Huang J, Jiang X, Zhang X, Chen W, Tian B, Shu Z, Hu S (2008) Expressed sequence tag analysis of marine fungus Schizochytrium producing docosahexaenoic acid. J Biotechnol 138:9–16

    Article  CAS  PubMed  Google Scholar 

  • Huang JZ, Jiang XZ, Xia XF, Yu AQ, Mao RY, Chen XF, Tian BY (2011) Cloning and functional identification of delta5 fatty acid desaturase gene and its 5′-upstream region from marine fungus Thraustochytrium sp. FJN-10. Mar Biotechnol 13:12–21

    Article  CAS  PubMed  Google Scholar 

  • Jeennor S, Laoteng K, Tanticharoen M, Cheevadhanarak S (2006) Comparative fatty acid profiling of Mucor rouxii under different stress conditions. FEMS Microbiol Lett 259:60–66

    Article  CAS  PubMed  Google Scholar 

  • Kaewsuwan S et al (2006) Identification and functional characterization of the moss Physcomitrella patens Δ5-desaturase gene involved in arachidonic and eicosapentaenoic acid biosynthesis. J Biol Chem 281:21988–21997

    Article  CAS  PubMed  Google Scholar 

  • Kim SH et al (2011) Functional characterization of a delta 6-desaturase gene from the black seabream (Acanthopagrus schlegeli). Biotechnol Lett 33:1185–1193

    Article  PubMed  Google Scholar 

  • Kwast KE, Burke PV, Brown K, Poyton RO (1997) REO1 and ROX1 are alleles of the same gene which encodes a transcriptional repressor of hypoxic genes in Saccharomyces cerevisiae. Curr Genet 32:377–383

    Article  CAS  PubMed  Google Scholar 

  • Laoteng K, Cheevadhanarak S, Tanticharoen M, Maresca B (2005) Promoter analysis of Mucor rouxii delta9-desaturase: its implication for transcriptional regulation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 335:400–405

    Article  CAS  PubMed  Google Scholar 

  • Lin X et al (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Li JN, Chai YR, Zhang XK (2009) Identification and characterization of a novel 6-fatty acid desaturase gene from Rhizopus nigricans. Mol Biol Rep 36:2291–2297

    Article  CAS  PubMed  Google Scholar 

  • Martin CE, Oh CS, Jiang Y (2007) Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta 1771:271–285

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Jacobson MJ, Man WC, Cohen P, Asilmaz E, Friedman JM, Ntambi JM (2003) Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J Biol Chem 278:33904–33911

    Article  CAS  PubMed  Google Scholar 

  • Park H, Graef G, Xu Y, Tenopir P, Clemente TE (2014) Stacking of a stearoyl-ACP thioesterase with a dual-silenced palmitoyl-ACP thioesterase and 12 fatty acid desaturase in transgenic soybean. Plant Biotechnol J 12:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Pereira SL, Leonard AE, Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostagland Leukot Essent Fatty Acids 68:97–106

    Article  CAS  Google Scholar 

  • Qiu X, Hong H, MacKenzie SL (2001) Identification of a Delta 4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J Biol Chem 276:31561–31566

    Article  CAS  PubMed  Google Scholar 

  • Roux M, Kock J, Botha A, Du Preez J, Wells G, Botes P (1994) Mucor—a source of cocoa butter and γ-linolenic acid. World J Microbiol Biotechnol 10:417–422

    Article  CAS  PubMed  Google Scholar 

  • Sibi G, Anuraag T, Bafila G (2014) Copper stress on cellular contents and fatty acid profiles in Chlorella species. Online J Biol Sci 14:209–217

    Article  Google Scholar 

  • Subudhi S, Kurdrid P, Hongsthong A, Sirijuntarut M, Cheevadhanarak S, Tanticharoen M (2008) Isolation and functional characterization of Spirulina D6D gene promoter: role of a putative GntR transcription factor in transcriptional regulation of D6D gene expression. Biochem Biophys Res Commun 365:643–649

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan L, Li S, Zhang X, Ma F (2015) Cloning and functional analysis of Delta6-desaturase gene and its upstream region from Mortierella sp AGED. J Sci Food Agric 95:3077–3083

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Cho HP, Nakamura MT, Clarke SD (2003) Regulation of human delta-6 desaturase gene transcription: identification of a functional direct repeat-1 element. J Lipid Res 44:686–695

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Zhou H, Yang Z, Zhang X, Xing L, Li M (2009) Identification of a novel delta9-fatty acid desaturase gene and its promoter from oil-producing fungus Rhizopus arrhizus. Mol Biol Rep 36:177–186

    Article  CAS  PubMed  Google Scholar 

  • Yu AQ, Jiang XZ, Xia XF, Wu SG, Huang JZ (2009) Isolation and molecular identification of Mucor sp. EIM-10 accumulating GLA. Chin J Bioproc Eng 7:74–78

    CAS  Google Scholar 

  • Zhang L, Ge L, Tran T, Stenn K, Prouty SM (2001) Isolation and characterization of the human stearoyl-CoA desaturase gene promoter: requirement of a conserved CCAAT cis-element. Biochem J 357:183–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Sha W, Wang QY, Zhai Y, Zhao Y, Shao SL (2015) Molecular cloning and activity analysis of a seed-specific FAD2-1B gene promoter from Glycine max. Cell Mol Biol 61:85–89

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 30970047) and Natural Science Foundation of Fujian, China (Grant No. 2016J01147).

Supporting information

Supplementary Table 1—Primers used in the study.

Supplementary Table 2—Plasmid used in the study.

Supplementary Table 3—Conversion efficiency of typical Δ6 desaturases.

Supplementary Fig. 1—Multiple sequence alignment of the Δ6-desaturase using ClustalX.

Supplementary Fig. 2—Hydropathy analysis of Mucor sp. EIM-10 Δ6-desaturase.

Supplementary Fig. 3—Mass identification of the novel peak.

Supplementary Fig. 4—Phylogenetic analysis of promoter sequence of Δ6-desaturase gene.

Supplementary Fig. 5—Functional characterization of Δ6-desaturase promoter by GFP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Huang.

Additional information

The original version of this article was revised: the “Δ6-fatty acid desaturase” in the article title has been corrected.

An erratum to this article is available at http://dx.doi.org/10.1007/s10529-016-2284-z.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Liu, H., Niu, Y. et al. Functional identification and regulatory analysis of Δ6-fatty acid desaturase from the oleaginous fungus Mucor sp. EIM-10. Biotechnol Lett 39, 453–461 (2017). https://doi.org/10.1007/s10529-016-2268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2268-z

Keywords

Navigation