Skip to main content
Log in

Effects of iron on fatty acid and astaxanthin accumulation in mixotrophic Chromochloris zofingiensis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The integration of oleaginous microalgae cultivation with high-value products is considered a low-cost approach for manufacturing algae-based biodiesel. The objective of this study was to investigate the potential of using Fe(II) to produce fatty acids and astaxanthin in mixotrophic Chromochloris zofingiensis. Fatty acid biosynthesis was less sensitive than astaxanthin formation to the changes in Fe2+ concentrations. However, the enhancement and inhibition of fatty acids formation were concomitant with an increase and a decrease in the production of astaxanthin, respectively. The highest contents of astaxanthin and total fatty acids were simultaneously obtained at 0.2 mM Fe2+ with the corresponding values of 2.2 mg g−1 (i.e., 25.8 mg l−1) and 41.8 % dry weight (i.e., 5 g l−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aoi W, Naito Y, Takanami Y, Ishii T, Kawai Y, Akagiri S, Kato Y, Osawa T, Yoshikawa T (2008) Astaxanthin improves muscle lipid metabolism in exercise via inhibitory effect of oxidative CPTI modification. Biochem Biophys Res Commun 366:892–897

    Article  PubMed  CAS  Google Scholar 

  • Bar E, Rise M, Vishkautsan M, Arad S (1995) Pigments and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiol 146:527–534

    Article  CAS  Google Scholar 

  • Baroli I, Do AD, Yamane T, Niyogi KK (2003) Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15:992–1008

    Article  PubMed  CAS  Google Scholar 

  • Bjerkeng B (2008) Carotenoids in aquaculture: fish and crustaceans. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 4. Birkhäuser, Basel, pp 237–254

    Chapter  Google Scholar 

  • Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209

    Article  CAS  Google Scholar 

  • Chen T, Wei D, Chen G, Wang Y, Chen F (2009) Employment of organic acids to enhance astaxanthin formation in heterotrophic Chlorella zofingiensis. J Food Process Pres 33:271–284

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Choi YE, Yun YS, Park JM (2002) Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnol Progr 18:1170–1175

    Article  CAS  Google Scholar 

  • Christie WW (2003) Lipid analysis: isolation, separation, identification, and structural analysis of lipids, 3rd edn. The Oily Press, Bridgwater

    Google Scholar 

  • Cunningham FX Jr, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  PubMed  CAS  Google Scholar 

  • Flores-Cotera LB, Sánchez S (2001) Copper but not iron limitation increases astaxanthin production by Phaffia rhodozyma in a chemically defined medium. Biotechnol Lett 23:793–797

    Article  CAS  Google Scholar 

  • Higuera I, Elix-Valenzuela LF, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci 46:185–196

    Article  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Zhang CW, Sommerfeld M (2006) Biodiesel from algae: lessons learned over the past 60 years and future perspectives. J Phycol 42:12

    CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449

    Article  PubMed  CAS  Google Scholar 

  • Ip PF, Chen F (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40:733–738

    Article  CAS  Google Scholar 

  • Ip PF, Wong KH, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766

    Article  CAS  Google Scholar 

  • Kakizono T, Kobayashi M, Nagai S (1992) Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:403–405

    Article  CAS  Google Scholar 

  • Knothe G (2008) ‘‘Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364

    Article  CAS  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1991) Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. J Ferment Bioeng 71:335–339

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nishio N (1993) Enhanced carotenoid biosyntheses by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus-pluvialis. Appl Environ Microbiol 59:867–873

    PubMed  CAS  Google Scholar 

  • Kuhl A, Lorenzen H (1964) Handling and culturing of Chlorella. In: Prescott DM (ed) Methods in cell physiology. Academic Press, New York, pp 152–187

    Google Scholar 

  • Liu BH, Zhang DH, Lee YK (2000) Effects of nutrient levels on cell growth and secondary carotenoids formation in the freshwater green alga, Chlorococcum sp. J Microbiol Biotechnol 10:201–207

    CAS  Google Scholar 

  • Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110

    Article  PubMed  CAS  Google Scholar 

  • Matsuka M, Miyachi S (1974) Photosynthetic metabolism of C-14O2 in process of glucose-bleaching of Chlorella protothecoides. Plant Cell Physiol 15:919–926

    CAS  Google Scholar 

  • Miao XL, Wu QY (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  PubMed  CAS  Google Scholar 

  • Miao FP, Lu DY, Zhang CW, Zuo JC, Geng YH, Hu HJ, Li YG (2008) The synthesis of astaxanthin esters, independent of the formation of cysts, highly correlates with the synthesis of fatty acids in Haematococcus pluvialis. Sci China Ser C 51:1094–1100

    Article  CAS  Google Scholar 

  • Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtani A (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177:6575–6584

    PubMed  CAS  Google Scholar 

  • Raman V, Ravi S (2011) Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiol Plant 33:1043–1049

    Article  CAS  Google Scholar 

  • Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149

    Article  CAS  Google Scholar 

  • Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189

    Article  Google Scholar 

  • Sun N, Wang Y, Li YT, Huang JC, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292

    Article  CAS  Google Scholar 

  • Tan CK, Johns MR (1991) Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia 215:13–19

    Article  CAS  Google Scholar 

  • Xiong W, Gao C, Yan D, Wu C, Wu Q (2010) Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101:2287–2293

    Article  PubMed  CAS  Google Scholar 

  • Zhekisheva M, Zarka A, Khozin-Goldberg I, Cohen Z, Boussiba S (2005) Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga Haematococcus pluvialis (Chlorophyceae). J Phycol 41:819–826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 50904051), Science and Technology Planning Project of Yantai, China (No. 2010247), and open fund of Shandong Oriental Ocean Sci-Tech Co., Ltd (No. 200803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 128 kb)

Supplementary material 2 (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Liu, Z. & Qin, S. Effects of iron on fatty acid and astaxanthin accumulation in mixotrophic Chromochloris zofingiensis . Biotechnol Lett 35, 351–357 (2013). https://doi.org/10.1007/s10529-012-1096-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-1096-z

Keywords

Navigation