Skip to main content
Log in

Biorefinery Potential of Microalga Haematococcus pluvialis to Produce Astaxanthin and Biodiesel Under Nitrogen Deprivation

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biorefining of Haematococcus pluvialis can be employed through the integration of different bio-product production from the same feedstock. In this regard, the present study evaluated the potential of utilizing microalga H. pluvialis to produce biodiesel without being constricted to astaxanthin under nitrogen deprivation. Hence, the impact of nitrogen limitation was investigated on the growth parameters, photosynthetic pigments, astaxanthin, and biochemical composition as well as the fatty acid (FA) profile of H. pluvialis. Finally, the physical/chemical features of biodiesel produced from H. pluvialis were assessed. Nitrogen deprivation (0 mg /L) decreased the cell number (/mL), biomass (g/ L), cell size, growth rate (µ), and biomass productivity (g/ L/ d) of H. pluvialis during 40 days of the experiment. Additionally, a remarkable reduction was found in chlorophyll content (pg/cell) under nitrogen deprivation over the culture period, whilst astaxanthin (µg/cell) was found to be four times higher on the 40th day. Following treatment for 40 days, the carbohydrate and protein contents of the control culture (nitrogen-rich culture) were highest, while the lipid content of H. pluvialis did not change significantly under nitrogen stress. Besides, saturated fatty acids (SFAs) accounted for 75% of the total FAs under nitrogen starvation. Hence, the high SFAs level and the lowest level of C18 FAs determined the suitability of H. pluvialis grown in nitrogen-free culture for the production of biodiesel. Accordingly, cellular stresses, such as nitrogen limitation, increase the production of astaxanthin in H. pluvialis simultaneously by changes in the quality and quantity of biochemical composition, such as FAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All datasets generated for this study are included in the manuscript.

References

  1. Saidur R, BoroumandJazi G, Mekhilef S, Mohammed HA (2012) A review on exergy analysis of biomass based fuels. Renew Sustain Energy Rev 16:1217–1222. https://doi.org/10.1016/j.rser.2011.07.076

    Article  CAS  Google Scholar 

  2. Chandra R, Iqbal HMN, Vishal G, Lee HS, Nagra S (2019) Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour Technol 278:346–359. https://doi.org/10.1016/j.biortech.2019.01.104

    Article  CAS  PubMed  Google Scholar 

  3. Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198. https://doi.org/10.1016/j.biortech.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  4. Behera B, Selvam SM, Paramasivan B (2022) Research trends and market opportunities of microalgal biorefinery technologies from circular bioeconomy perspectives. Bioresour Technol 351:127038. https://doi.org/10.1016/j.biortech.2022.127038

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Wu H, Yuan C et al (2019) Growth, biochemical composition, and photosynthetic performance of Scenedesmus acuminatus during nitrogen starvation and resupply. J Appl Phycol 31:2797–2809. https://doi.org/10.1007/s10811-019-01783-z

    Article  CAS  Google Scholar 

  6. Zarrinmehr MJ, Farhadian O, Heyrati FP, Keramat J, Koutra E, Kornaros M, Daneshvar E (2020) Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egypt J Aquat Res 46:153–158. https://doi.org/10.1016/j.ejar.2019.11.003

    Article  Google Scholar 

  7. Zhu Y, Zhao X, Zhang X, Liu H (2019) Extraction, structural and functional properties of Haematococcus pluvialis protein after pigment removal. Int J Biol Macromol 140:1073–1083. https://doi.org/10.1016/j.ijbiomac.2019.08.209

    Article  CAS  PubMed  Google Scholar 

  8. Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A Review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:546. https://doi.org/10.3389/fmicb.2016.00546

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim DY, Vijayan D, Praveenkumar R, Han J-I, Lee K, Park J-Y, Chang W-S, Lee J-S, Oh Y-K (2016) Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour Technol 199:300–310. https://doi.org/10.1016/j.biortech.2015.08.107

    Article  CAS  PubMed  Google Scholar 

  10. Yu C, Li X, Han B, Zhao Y, Geng S, Ning D, Ma T, Yu X (2021) Simultaneous improvement of astaxanthin and lipid production of Haematococcus pluvialis by using walnut shell extracts. Algal Res 54:102171. https://doi.org/10.1016/j.algal.2020.102171

    Article  Google Scholar 

  11. Nishshanka GKSH, Liyanaarachchi VC, Nimarshana PHV, Ariyadasa TU, Chang JS (2022) Haematococcus pluvialis: A potential feedstock for multiple-product biorefining. J Clean Prod 344:131103. https://doi.org/10.1016/j.jclepro.2022.131103

    Article  CAS  Google Scholar 

  12. Behera B, Acharya A, Gargey IA, Aly N, Balasubramanian P (2019) Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. Bioresour Technol Reports 5:297–316. https://doi.org/10.1016/j.biteb.2018.08.001

    Article  Google Scholar 

  13. Subhash GV, Rajvanshi M, Kumar GR, Sagaram US, Prasad V, Govindachary S, Dasgupta S (2022) Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem. Bioresour Technol 343:126155. https://doi.org/10.1016/j.biortech.2021.126155

    Article  CAS  Google Scholar 

  14. Siddiki SYA, Mofijur M, Kumar PS, Ahmed SF, Inayat A, Kusumo F, Badruddin IA, Khan TY, Nghiem LD, Ong HC, Mahlia TM (2022) Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: an integrated biorefinery concept. Fuel 307:121782. https://doi.org/10.1016/j.fuel.2021.121782

    Article  CAS  Google Scholar 

  15. Banu JR, Preethi KS, Kumar G (2020) Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour Technol 302:122822. https://doi.org/10.1016/j.biortech.2020.122822

    Article  CAS  Google Scholar 

  16. Thawechai T, Cheirsilp B, Louhasakul Y, Boonsawang P, Prasertsan P (2016) Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: effect of light illumination and carbon dioxide feeding strategies. Bioresour Technol 219:139–149. https://doi.org/10.1016/j.biortech.2016.07.109

    Article  CAS  PubMed  Google Scholar 

  17. Wang F, Gao B, Wu M, Huang L, Zhang C (2019) A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35. Algal Res 39:101466. https://doi.org/10.1016/j.algal.2019.101466

    Article  Google Scholar 

  18. Nahidian B, Ghanati F, Shahbazi M, Soltani N (2018) Effect of nutrients on the growth and physiological features of newly isolated Haematococcus pluvialis TMU1. Bioresour Technol 255:229–237. https://doi.org/10.1016/j.biortech.2018.01.130

    Article  CAS  PubMed  Google Scholar 

  19. Fu L, Li Q, Yan G, Zhou D, Crittenden JC (2019) Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation. Biotechnol Biofuels 12:121. https://doi.org/10.1186/s13068-019-1458-z

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, Mishra S (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 156:146–154. https://doi.org/10.1016/j.biortech.2014.01.025

    Article  CAS  PubMed  Google Scholar 

  21. Zhang WW, Zhou XF, Zhang YL, Cheng PF, Ma R, Cheng WL, Chu HQ (2018) Enhancing astaxanthin accumulation in Haematococcus pluvialis by coupled light intensity and nitrogen starvation in column photobioreactors. J Microbiol Biotechnol 28:2019–2028. https://doi.org/10.4014/jmb.1807.07008

    Article  CAS  PubMed  Google Scholar 

  22. Moheimani NR, Borowitzka MA, Isdepsky A, Sing SF (2013) Standard methods for measuring growth of algae and their composition. In: Algae for biofuels and energy. Springer Netherlands, Dordrecht, pp 265–284. https://doi.org/10.1007/978-94-007-5479-9_16

  23. Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem 1:F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01

  24. Liyanaarachchi VC, Nishshanka GKSH, Premaratne RGMM et al (2020) Astaxanthin accumulation in the green microalga Haematococcus pluvialis: effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnol Reports 28:e00538. https://doi.org/10.1016/j.btre.2020.e00538

    Article  Google Scholar 

  25. Klin M, Pniewski F, Latała A (2018) Characteristics of the growth rate and lipid production in fourteen strains of Baltic green microalgae. Oceanol Hydrobiol Stud 47:10–18. https://doi.org/10.1515/ohs-2018-0002

    Article  CAS  Google Scholar 

  26. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  27. Kobayashi N, Noel EA, Barnes A, Watson A, Rosenberg JN, Erickson G, Oyler GA (2013) Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol 150:377–386. https://doi.org/10.1016/j.biortech.2013.10.032

    Article  CAS  PubMed  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  29. Breuer G, Evers WAC, de Vree JH, Kleinegris DMM, Martens DE, Wijffels RH, Lamers PP (2013) Analysis of fatty acid content and composition in microalgae. J Vis Exp 50628. https://doi.org/10.3791/50628

  30. Song M, Pei H, Hu W, Ma G (2013) Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour Technol 141:245–251. https://doi.org/10.1016/j.biortech.2013.02.024

    Article  CAS  PubMed  Google Scholar 

  31. Arguelles ED, Laurena AC, Monsalud RG, Martinez-Goss MR (2018) Fatty acid profile and fuel-derived physico-chemical properties of biodiesel obtained from an indigenous green microalga, Desmodesmus sp. (I-AU1), as potential source of renewable lipid and high quality biodiesel. J Appl Phycol 30:411–419. https://doi.org/10.1007/s10811-017-1264-6

    Article  CAS  Google Scholar 

  32. Nautiyal P, Subramanian KA, Dastidar MG (2014) Production and characterization of biodiesel from algae. Fuel Process Technol 120:79–88. https://doi.org/10.1016/j.fuproc.2013.12.003

    Article  CAS  Google Scholar 

  33. Ördög V, Stirk WA, Bálint P et al (2012) Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol 24:907–914. https://doi.org/10.1007/s10811-011-9711-2

    Article  CAS  Google Scholar 

  34. Tarazona Delgado R, dos Guarieiro M, S, Antunes PW, et al (2021) Effect of nitrogen limitation on growth, biochemical composition, and cell ultrastructure of the microalga Picocystis salinarum. J Appl Phycol 33:2083–2092. https://doi.org/10.1007/s10811-021-02462-8

    Article  CAS  Google Scholar 

  35. Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101:4499–4507. https://doi.org/10.1016/j.biortech.2010.01.065

    Article  CAS  PubMed  Google Scholar 

  36. Liu T, Chen Z, Xiao Y, Yuan M, Zhou C, Liu G, Fang J, Yang B (2022) Biochemical and morphological changes triggered by nitrogen stress in the oleaginous microalga Chlorella vulgaris. Microorganisms 10:566. https://doi.org/10.3390/microorganisms10030566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y-M, Chen H, He C-L, Wang Q (2013) Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS ONE 8:e69225. https://doi.org/10.1371/journal.pone.0069225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma X, Liu J, Liu B et al (2016) Physiological and biochemical changes reveal stress-associated photosynthetic carbon partitioning into triacylglycerol in the oleaginous marine alga Nannochloropsis oculata. Algal Res 16:28–35. https://doi.org/10.1016/j.algal.2016.03.005

    Article  Google Scholar 

  39. Young EB, Beardall J (2003) Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle. J Phycol 39:897–905. https://doi.org/10.1046/j.1529-8817.2003.03042.x

    Article  CAS  Google Scholar 

  40. Li F, Cai M, Wu Y, Lian Q, Qian Z, Luo J, Zhang Y, Zhang N, Li C, Huang X (2022) Effects of nitrogen and light intensity on the astaxanthin accumulation in motile cells of Haematococcus pluvialis. Front Mar Sci 9:. https://doi.org/10.3389/fmars.2022.909237

  41. Niizawa I, Espinaco BY, Leonardi JR, Heinrich JM, Sihufe AG (2018) Enhancement of astaxanthin production from Haematococcus pluvialis under autotrophic growth conditions by a sequential stress strategy. Prep Biochem Biotechnol 48:528–534. https://doi.org/10.1080/10826068.2018.1466159

    Article  CAS  PubMed  Google Scholar 

  42. Hosseini A, Jazini M, Mahdieh M, Karimi K (2020) Efficient superantioxidant and biofuel production from microalga Haematococcus pluvialis via a biorefinery approach. Bioresour Technol 306:123100. https://doi.org/10.1016/j.biortech.2020.123100

    Article  CAS  PubMed  Google Scholar 

  43. Li T, Xu J, Gao B, Xiang W, Li A, Zhang C (2016) Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Res 16:481–491. https://doi.org/10.1016/j.algal.2016.04.008

    Article  Google Scholar 

  44. Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41. https://doi.org/10.1016/j.jbiotec.2009.02.018

    Article  CAS  PubMed  Google Scholar 

  45. Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441. https://doi.org/10.1007/s00253-011-3170-1

    Article  CAS  PubMed  Google Scholar 

  46. Behera B, Selvam SM, Dey B, Balasubramanian P (2020) Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst. Bioresour Technol 310:123392. https://doi.org/10.1016/j.biortech.2020.123392

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, Li J, Dong W, Zhang X, Tyagi RD, Drogui P, Surampalli RY (2018) The potential of microalgae in biodiesel production. Renew Sustain Energy Rev 90:336–346. https://doi.org/10.1016/j.rser.2018.03.073

    Article  Google Scholar 

  48. Alptekin E, Canakci M (2008) Determination of the density and the viscosities of biodiesel-diesel fuel blends. Renew Energy 33:2623–2630. https://doi.org/10.1016/j.renene.2008.02.020

    Article  CAS  Google Scholar 

  49. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169. https://doi.org/10.1016/j.rser.2011.07.143

    Article  CAS  Google Scholar 

  50. Peterson CL, Taberski JS, Thompson JC, Chase CL (2000) The effect of biodiesel feedstock on regulated emmisions in chassis dynamometer tests of a pickup truck. Trans ASAE 43:1371–1381. https://doi.org/10.13031/2013.3034

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Shiraz University Research Council under grant number 256248.

Author information

Authors and Affiliations

Authors

Contributions

Zahra Zarei: investigation, writing (original draft), methodology, formal analysis. Hajar Zamani: formal analysis, conceptualization, supervision, writing (review and editing), funding acquisition.

Corresponding author

Correspondence to Hajar Zamani.

Ethics declarations

Conflict of Interest statement

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, Z., Zamani, H. Biorefinery Potential of Microalga Haematococcus pluvialis to Produce Astaxanthin and Biodiesel Under Nitrogen Deprivation. Bioenerg. Res. 16, 1777–1788 (2023). https://doi.org/10.1007/s12155-022-10554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10554-7

Keywords

Navigation