Skip to main content
Log in

Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The influence of phytohormones, salicylic acid (SA) and methyl jasmonate (MJ) on the antioxidant systems in Haematococcus pluvialis was investigated. Both SA and MJ at 500 μM concentration reduced the growth of alga with salicylic acid, having more pronounced effect. Carotenoid and chlorophyll contents were decreased by SA and increased by MJ. Salicylic acid (100 μM) increased astaxanthin content to 6.8-fold under low light (30 μmol m−2 s−1), while MJ (10 μM) showed marginal increase in astaxanthin. Salicylic acid (500 μM) increased superoxide dismutase activity to 4.5- and 3.3-fold and ascorbate peroxidase (APX) activity to 15.5- and 7.1-fold under low and high light, respectively. Methyl jasmonate increased catalase activity (1.4-fold) under high light and APX activity (5.4-fold) under low light. Different mechanism of oxidative stress induced antioxidant production may be the plausible reason for this varied response for salicylic acid and methyl jasmonate. Higher concentrations of SA and MJ inhibited astaxanthin accumulation by different mechanisms either by scavenging the free radicals or by increasing primary carotenoids production. At lower concentrations, these phytohormones could be used for elicitation of secondary carotenoid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Agarwal S, Sairam RK, Srivastava GC, Tyagi A, Meena RC (2005) Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci 169:559–570

    Article  CAS  Google Scholar 

  • Arnold TM, Targett NM, Tanner CE, Hatch WI, Ferrari KE (2001) Evidence for methyl jasmonate-induced phlorotannin production in Fucus vesiculosus (Phaeophyceae). J Phycol 37:1026–1029

    Article  CAS  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    PubMed  CAS  Google Scholar 

  • Choo KS, Snoeijs P, Pedersén M (2004) Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana. J Exp Mar Biol Ecol 298:111–123

    Article  CAS  Google Scholar 

  • Czerpak R, Bajguz A, Gromek M, Kozlowska G, Nowak I (2002) Activity of salicylic acid on the growth and biochemism of Chlorella vulgaris Beijerinck. Acta Physiol Plant 24:45–52

    Article  CAS  Google Scholar 

  • Czerpak R, Piotrowska A, Szulecka K (2006) Jasmonic acid affects changes in the growth and some components con tent in alga Chlorella vulgaris. Acta Physiol Plant 28:195–203

    Article  CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  • Fedina IS, Benderliev KM (2000) Response of Scenedesmus incrassatulus to salt stress as affected by methyl jasmonate. Biologia Plant 43:625–627

    Article  CAS  Google Scholar 

  • Fung IP (2005) Elicitation of astaxanthin biosynthesis in dark-heterotrophic cultures of Chlorella zofingiensis. PhD thesis, The University of Hong Kong, Hong Kong

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  PubMed  CAS  Google Scholar 

  • Jin E, Lee CG, Polle JEW (2006) Secondary carotenoid accumulation in Haematococcus (Chlorophyceae): biosynthesis, regulation, and biotechnology. J Microbiol Biotechnol 16:821–831

    CAS  Google Scholar 

  • Jung S (2004) Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or norflurazon on antioxidant systems. Plant Physiol Biochem 42:225–231

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M (2000) In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 54:550–555

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Hirai N, Kurimura Y, Ohigashi H, Tsuji Y (1997) Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis. Plant Growth Regul 22:79–85

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:269–275

    Google Scholar 

  • Mallick N (2004) Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. J Plant Physiol 161:591–597

    Article  PubMed  CAS  Google Scholar 

  • Murthy KNC, Jayaprakasha GK, Singh RP (2002) Studies on antioxidant activity of Pomegranate (Punica granatum) peel Extracts using in vivo models. J Agric Food Chem 50:4791–4795

    Article  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 metabolizing enzymes. Plant Physiol 115:137–149

    Article  PubMed  CAS  Google Scholar 

  • Sarada R, Usha T, Ravishankar GA (2002) Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem 37:623–627

    Article  CAS  Google Scholar 

  • Stockigt J, Oblitz P, Falkenhagen H, Lutterbach R, Endeß S (1995) Natural products and enzymes from plant cell cultures. Plant Cell Tissue Org Cult 43:97–109

    Article  Google Scholar 

  • Sudha G, Ravishankar GA (2003) Influence of methyl jasmonate and salicylic acid in the enhancement of capsaicin production in cell suspension cultures of Capsicum frutescens Mill. Curr Sci 85:1212–1217

    CAS  Google Scholar 

  • Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in Algae. Russ J Plant Physiol 54:163–170

    Article  CAS  Google Scholar 

  • Ueda J, Miyamoto K, Aoki M, Hirata T, Sato T, Momotani Y (1991) Identification of jasmonic acid from Euglena gracilis Z as a plant growth regulator. Bull Univ Osaka Prefect Ser B Agric Biol 43:103–108

    CAS  Google Scholar 

  • Usha T, Sarada R, Rao SR, Ravishankar GA (1999) Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresour Technol 68:197–199

    Article  Google Scholar 

  • Usha T, Sarada R, Ravishankar GA (2002) Effect of culture conditions on growth of green alga Haematococcus pluvialis and astaxanthin production. Acta Physiol plant 24:323–329

  • Uzunova AN, Popova LP (2000) Effect of salicylic acid on leaf anatomy and chloroplast ultra structure of barley plants. Photosynthetica 38:243–250

    Article  CAS  Google Scholar 

  • Vidhyavathi R, Venkatachalam L, Kamath BS, Sarada R, Ravishankar GA (2007) Differential expression of carotenogenic genes and associated changes in pigment profile during regeneration of Haematococcus pluvialis cysts. Appl Microbiol Biotechnol 75:879–887

    Article  PubMed  CAS  Google Scholar 

  • Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar GA (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J Exp Bot 59:1409–1418

    Article  PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ (2007) Large scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30:410–421

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124

    Article  CAS  Google Scholar 

  • Wang H, Feng T, Peng X, Yan M, Tang X (2009) Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicol Environ Saf 72:1354–1362

    Article  PubMed  CAS  Google Scholar 

  • Yong YYR, Lee YK (1991) Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta)? J Phycol 30:257–261

    Article  Google Scholar 

Download references

Acknowledgments

The author RV acknowledges Council of Scientific and Industrial Research, India, for Research Fellowship. Encouragement by Dr. V. Prakash, Director and G. A. Ravishankar, Head, PCBT, CFTRI for research activities is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarada Ravi.

Additional information

Communicated by S. Abe.

Central Food Technological Research Institute is a constituent laboratory of Council of Scientific and Industrial Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raman, V., Ravi, S. Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis . Acta Physiol Plant 33, 1043–1049 (2011). https://doi.org/10.1007/s11738-010-0623-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0623-6

Keywords

Navigation