Skip to main content
Log in

De novo engineering and metabolic flux analysis of inosine biosynthesis in Bacillus subtilis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Wild-type B. subtilis strain W168 was de novo engineered for inosine biosynthesis. Inactivation of deoD and purA led to 0.15 ± 0.04 and 6.44 ± 0.39 g inosine/l yields, respectively. The deoD purA double mutant accumulated 7.6 ± 0.34 g inosine/l, with a 4.7% (w/w) conversion ratio from glucose to inosine. Comparative metabolic flux analysis revealed that the fluxes from inosine to hypoxanthine and from inosine monophosphate to adenosine monophosphate in the double mutant decreased to 14.0 and 0.61% of those in the wild-type strain. The major role of purA was demonstrated when inactivation of deoD and purA were found to contribute additively to inosine accumulation. This work is expected to contribute to the improvement of the fermentative production of purine nucleosides in the microbial industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746

    PubMed  CAS  Google Scholar 

  • Chen N, Huang J, Feng Z, Yu L, Xu Q, Wen T (2009) Optimization of fermentation conditions for the biosynthesis of l-threonine by Escherichia coli. Appl Biochem Biotechnol 158:595–604

    Article  PubMed  CAS  Google Scholar 

  • Duan Y, Chen T, Chen X, Zhao X (2010) Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl Microbiol Biotechnol 85:1907–1914

    Article  PubMed  CAS  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini A, Alloni G, Azevedo V, Bertero M, Bessieres P, Bolotin A, Borchert S (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:237–238

    Article  Google Scholar 

  • Sauer U, Cameron D, Bailey J (1998) Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnol Bioeng 59:227–238

    Article  PubMed  CAS  Google Scholar 

  • Schuch R, Garibian A, Saxild H, Piggot P, Nygaard P (1999) Nucleosides as a carbon source in Bacillus subtilis: characterization of the drm-pupG operon. Microbiology 145:2957

    PubMed  CAS  Google Scholar 

  • Shimaoka M, Kawasaki H, Takenaka Y, Kurahashi O, Matsui H (2005) Effects of edd and pgi disruptions on inosine accumulation in Escherichia coli. Biosci Biotechnol Biochem 69:1248–1255

    Article  PubMed  CAS  Google Scholar 

  • Shimaoka M, Takenaka Y, Mihara Y, Kurahashi O, Kawasaki H, Matsui H (2006) Effects of xapA and guaA disruption on inosine accumulation in Escherichia coli. Biosci Biotechnol Biochem 70:3069–3072

    Article  PubMed  CAS  Google Scholar 

  • Shimaoka M, Takenaka Y, Kurahashi O, Kawasaki H, Matsui H (2007) Effect of amplification of desensitized purF and prs on inosine accumulation in Escherichia coli. J Biosci Bioeng 103:255–261

    Article  PubMed  CAS  Google Scholar 

  • Srivatsan A, Han Y, Peng J, Tehranchi A, Gibbs R, Wang J, Chen R (2008) High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet 4:e1000139

    Article  PubMed  Google Scholar 

  • Torii T, Izawa K, Jang D, Cho D (2010) Inosine derivatives and production methods therefor. United States Patent 7816513

  • Wang H, Isaacs F, Carr P, Sun Z, Xu G, Forest C, Church G (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Li Z, Ye Q (2009) Enhanced d-ribose biosynthesis in batch culture of a transketolase-deficient Bacillus subtilis strain by citrate. J Ind Microbiol Biotechnol 36:1289–1296

    Article  PubMed  CAS  Google Scholar 

  • Zakataeva NP, Gronskiy SV, Sheremet AS, Kutukova EA, Novikova AE, Livshits VA (2007) A new function for the Bacillus PbuE purine base efflux pump: efflux of purine nucleosides. Res Microbiol 158:659–665

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Bacillus Genetic Stock Center (BGSC) and Prof. Ciarán Condon for providing the plasmids and strains used in this study. This research was funded by the National Drug Discovery Program of China (2008ZX09401-05), and Key Project of Chinese Academy of Sciences (KSCX2-EW-J-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingyi Wen.

Additional information

Haojian Li, Guoqiang Zhang: Co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhang, G., Deng, A. et al. De novo engineering and metabolic flux analysis of inosine biosynthesis in Bacillus subtilis . Biotechnol Lett 33, 1575–1580 (2011). https://doi.org/10.1007/s10529-011-0597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0597-5

Keywords

Navigation