Skip to main content
Log in

Carrier-free immobilized enzymes for biocatalysis

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Methods for the preparation of carrier-free insoluble enzymes are reviewed. The technology of cross-linked enzyme aggregates has now been applied to a range of synthetically useful activities. Fusion proteins are also gaining momentum because they allow a relatively selective aggregation or even a specific self-assembly of the desired enzyme activity into insoluble particles in the absence of potentially denaturing chemicals required for precipitation and cross-linking. Recycling of insoluble protein particles for multiple rounds of batchwise reaction has been demonstrated in selected biotransformations. However, for application in a fully continuous biocatalytic process, low resistance to mechanical stress and high compressibility are issues for consideration on carrier-free enzyme particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aytar BS, Bakir U (2008) Preparation of cross-linked tyrosinase aggregates. Process Biochem 43:125–131

    Article  CAS  Google Scholar 

  • Bayley H, Braha O, Cheley S, Gu L-Q (2004) Engineered nanopores. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley-VCH, Weinheim, pp 93–112

    Chapter  Google Scholar 

  • Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572

    Article  CAS  PubMed  Google Scholar 

  • Blecha A, Zarschler K, Sjollema KA, Veenhuis M, Rödel G (2005) Expression and cytosolic assembly of the S-layer fusion protein mSbsC-EGFP in eukaryotic cells. Microb Cell Fact 4:28

    Article  PubMed  Google Scholar 

  • Bommarius AS, Riebel BR (2005) Biocatalysis. Wiley-VCH, Weinheim

    Google Scholar 

  • Buchholz K, Kasche V, Bornscheuer UT (2005) Biocatalysts and enzyme technology. Wiley-VCH, Weinheim

    Google Scholar 

  • Cabana H, Jones JP, Agathos SN (2007) Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals. J Biotechnol 132:23–31

    Article  CAS  PubMed  Google Scholar 

  • Cabirol FL, Tan PL, Tay B, Cheng S, Hanefeld U, Sheldon RA (2008) Linum usitatissimum hydroxynitrile lyase cross-linked enzyme aggregates: a recyclable enantioselective catalyst. Adv Synth Catal 350:2329–2338

    Article  CAS  Google Scholar 

  • Cao L (2005) Carrier-bound immobilized enzymes: principles, applications and design. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Cao L, van Rantwijk F, Sheldon RA (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett 2:1361–1364

    Article  CAS  PubMed  Google Scholar 

  • Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394

    Article  CAS  PubMed  Google Scholar 

  • Carette N, Engelkamp H, Akpa E, Pierre SJ, Cameron NR, Christianen PCM et al (2006) A virus-based biocatalyst. Nat Nanotechnol 2:226–229

    Article  Google Scholar 

  • Chen J, Zhang J, Han B, Li Z, Li J, Feng X (2006) Synthesis of cross-linked enzyme aggregates (CLEAs) in CO2-expanded micellar solutions. Colloids Surf B 48:72–76

    Article  CAS  Google Scholar 

  • Chien L-J, Lee C-K (2007) Biosilicification of dual-fusion enzyme immobilized on magnetic nanoparticle. Biotechnol Bioeng 100:223–230

    Article  Google Scholar 

  • Dalal S, Sharma A, Gupta MN (2007) A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities. Chem Cent J 1:16

    Article  PubMed  Google Scholar 

  • Fujita Y, Mie M, Kobatake E (2009) Construction of nanoscale protein particle using temperature-sensitive elastin-like peptide and polyaspartic acid chain. Biomaterials 30:3450–3457

    Article  CAS  PubMed  Google Scholar 

  • Graff A, Benito SM, Verbert C, Meier W (2004) Polymer nanocontainers. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley-VCH, Weinheim, pp 168–184

    Chapter  Google Scholar 

  • Grage K, Rehm BHA (2008) In vivo production of scFv-displaying biopolymer beads using a self-assembly-promoting fusion partner. Bioconjug Chem 19:254–262

    Article  CAS  PubMed  Google Scholar 

  • Haering D, Schreier P (1998) Novel biocatalysts by chemical modification of known enzymes: cross-linked microcrystals of the semisynthetic peroxidase seleno-subtilisin. Angew Chem Int Ed 37:2471–2473

    Article  Google Scholar 

  • Hampp N, Oesterhelt D (2004) Bacteriorhodopsin and its potential in technical applications. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley-VCH, Weinheim, pp 146–167

    Chapter  Google Scholar 

  • Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468

    Article  CAS  PubMed  Google Scholar 

  • Hara P, Hanefeld U, Kanerva LT (2007) Sol–gels and cross-linked aggregates of lipase PS from Burkholderia cepacia and their application in dry organic solvents. J Mol Catal B 50:80–86

    Article  Google Scholar 

  • Heyman A, Levy I, Altman A, Shoseyov O (2007) SP1 as a novel scaffold building block for self-assembly nanofabrication of submicron enzymatic structures. Nano Lett 7:1575–1579

    Article  CAS  PubMed  Google Scholar 

  • Hickey AM, Marle L, McCreedy T, Watts P, Greenway GM, Littlechild JA (2007) Immobilization of thermophilic enzymes in miniaturized flow reactors. Biochem Soc Trans 35:1621–1623

    Article  CAS  PubMed  Google Scholar 

  • Hickey AM, Ngamsom B, Wiles C, Greenway GM, Watts P, Littlechild JA (2009) A microreactor for the study of biotransformations by a cross-linked γ-lactamase enzyme. Biotechnology J 4:510–516

    Article  CAS  Google Scholar 

  • Jekel M, Buhr A, Willke T, Vorlop K-D (1998) Neuartige Geleinschlußimmobilisate (LentiKats) in der Biotechnologie. Chem lngenieur Technik 70:438–441

    Article  CAS  Google Scholar 

  • Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    Article  CAS  PubMed  Google Scholar 

  • Khare SK, Vaidya S, Gupta MN (1991) Entrapment of proteins by aggregation within sephadex beads. Appl Biochem Biotechnol 27:205–216

    Article  CAS  PubMed  Google Scholar 

  • Kim MI, Kim J, Lee J, Jia H, Na HB, Youn JK, Kwak JH, Dohnalkova A, Grate JW, Wang P, Hyeon T, Park HG, Chang HN (2007) Cross-linked enzyme aggregates in hierarchically-ordered mesoporous silica: a simple and effective method for enzyme stabilization. Biotechnol Bioeng 96:210–218

    Article  CAS  PubMed  Google Scholar 

  • Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    Article  PubMed  Google Scholar 

  • Kubáč D, Kaplan O, Elišáková V, Pátek M, Vejvoda V, Slámová K, Tóthová A, Lemaire M, Gallienne E, Lutz-Wahl S, Fischer L, Kuzma M, Pelantová H, van Pelt S, Bolte J, Křen V, Martínková L (2008) Biotransformation of nitriles to amides using soluble and immobilized nitrile hydratase from Rhodococcus erythropolis A4. J Mol Catal B 50:107–113

    Article  Google Scholar 

  • Lim DW, Nettles DL, Setton LA, Chilkoti A (2007) Rapid cross-linking of elastin-like polypeptides with hydroxymethylphosphines in aqueous solution. Biomacromolecules 8:1463–1470

    Article  CAS  PubMed  Google Scholar 

  • Littlechild JA, Guy J, Connelly S, Mallett L, Waddell S, Rye CA, Line K, Isupov M (2007) Natural methods of protein stabilization: thermostable biocatalysts. Biochem Soc Trans 35:1558–1563

    Article  CAS  PubMed  Google Scholar 

  • López-Gallego F, Betancor L, Hidalgo A, Alonso N, Fernández-Lafuente R, Guisán JM (2005) Co-aggregation of enzymes and polyethyleneimine: a simple method to prepare stable and immobilized derivatives of glutaryl acylase. Biomacromolecules 6:1839–1842

    Article  PubMed  Google Scholar 

  • López-Serrano P, Cao L, van Rantwijk F, Sheldon RA (2002) Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnol Lett 24:1379–1383

    Article  Google Scholar 

  • Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanoates). J Macromol Sci C 49:226–248

    CAS  Google Scholar 

  • Luckarift HR, Spain JC, Naik RR, Stone MO (2004) Enzyme immobilization in a biomimetic silica support. Nat Biotechnol 22:211–213

    Article  CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  Google Scholar 

  • Margolin AL (1996) Novel crystalline catalysts. Trends Biotechnol 14:223–230

    Article  CAS  Google Scholar 

  • Marner WD, Shaikh AS, Muller SJ, Keasling JD (2009) Enzyme immobilization via silaffin-mediated autoencapsulation in a biosilica support. Biotechnol Prog 25:417–423

    Article  CAS  PubMed  Google Scholar 

  • Mateo C, Palomo JM, van Langen LM, van Rantwijk F, Sheldon RA (2004) A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng 86:273–276

    Article  CAS  PubMed  Google Scholar 

  • Mateo C, Chmura A, Rustler S, van Rantwijk F, Stolz A, Sheldon RA (2006) Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase–nitrilase bienzymatic cascade: a nitrilase surprisingly shows nitrile hydratase activity. Tetrahedron 17:320–323

    Article  CAS  Google Scholar 

  • Meyer DE, Chilkoti A (1999) Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol 17:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Meyer DE, Trabbic-Carlson K, Chilkoti A (2001) Protein purification by fusion with an environmentally responsive elastin-like polypeptide: effect of polypeptide length on the purification of thioredoxin. Biotechnol Prog 17:720–728

    Article  CAS  PubMed  Google Scholar 

  • Moldes C, García P, García JL, Prieto MA (2004) In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 70:3205–3212

    Article  CAS  PubMed  Google Scholar 

  • Nahálka J (2008) Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to α-d-glucose-1-phosphate. J Ind Microbiol Biotechnol 35:219–223

    Article  PubMed  Google Scholar 

  • Nahálka J, Nidetzky B (2007) Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis d-amino acid oxidase as insoluble enzyme aggregates. Biotechnol Bioeng 97:454–461

    Article  PubMed  Google Scholar 

  • Nahálka J, Pätoprstý V (2009) Enzymatic synthesis of sialylation substrates powered by a novel polyphosphate kinase (PPK3). Org Biomol Chem 7:1778–1780

    Article  PubMed  Google Scholar 

  • Nahálka J, Vikartovská A, Hrabárová E (2008) A cross-linked inclusion body process for sialic acid synthesis. J Biotechnol 134:146–153

    Article  PubMed  Google Scholar 

  • Nahálka J, Mislovičová D, Kavcová H (2009) Targeting lectin activity into inclusion bodies for the characterisation of glycoproteins. Mol Biosyst 5:819–821

    Article  PubMed  Google Scholar 

  • Naik RR, Tomczak MM, Luckarift HR, Spain JC, Stone MO (2004) Entrapment of enzymes and nanoparticles using biomimetically synthesized silica. Chem Commun 1684–1685

  • Neumann L, Spinozzi F, Sinibaldi R, Rustichelli F, Pötter M, Steinbüchel A (2008) Binding of the major phasin, PhaP1, from Ralstonia eutropha H16 to poly(3-hydroxybutyrate) granules. J Bacteriol 190:2911–2919

    Article  CAS  PubMed  Google Scholar 

  • Peters V, Rehm BHA (2006) In vivo enzyme immobilization by use of engineered polyhydroxyalkanoate synthase. Appl Environ Microbiol 72:1777–1783

    Article  CAS  PubMed  Google Scholar 

  • Poulsen N, Berne C, Spain J, Kröger N (2007) Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana. Angew Chem 119:1875–1878

    Article  Google Scholar 

  • Quiocho FA, Richards FM (1964) Intermolecular cross-linking of a protein in the crystalline state: carboxypeptidase-A. PNAS 52:833–839

    Article  CAS  PubMed  Google Scholar 

  • Rajan A, Abraham TE (2008) Studies on crystallization and cross-linking of lipase for biocatalysis. Bioprocess Biosyst Eng 31:87–94

    Article  CAS  PubMed  Google Scholar 

  • Rajendhran J, Gunasekaran P (2007) Application of cross-linked enzyme aggregates of Bacillus badius penicillin G acylase for the production of 6-aminopenicillanic acid. Lett Appl Microbiol 44:43–49

    Article  CAS  PubMed  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  PubMed  Google Scholar 

  • Roy JJ, Abraham TE (2006) Preparation and characterization of cross-linked enzyme crystals of laccase. J Mol Catal B 38:31–36

    Article  CAS  Google Scholar 

  • Schäffer C, Novotny R, Küpcü S, Zayni S, Scheberl A, Friedmann J, Sleytr UB, Messner P (2007) Novel biocatalysts based on S-layer self-assembly of Geobacillus stearothermophilus NRS 2004/3a: a nanobiotechnological approach. Small 3:1549–1559

    Article  PubMed  Google Scholar 

  • Schoevaart R, Wolbers MW, Golubovic M, Ottens M, Kieboom APG, van Rantwijk F, van der Wielen LAM, Sheldon RA (2004) Preparation, optimization and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng 87:754–762

    Article  CAS  PubMed  Google Scholar 

  • Schuster B, Pum D, Sleytr UB (2008) S-layer stabilized lipid membranes (review). Biointerphases 3:FA3-11

    Google Scholar 

  • Schwarz A, Thomsen MS, Nidetzky B (2009) Enzymatic synthesis of β-glucosylglycerol using a continuous-flow microreactor containing thermostable β-glycoside hydrolase CelB immobilized on coated microchannel walls. Biotechnol Bioeng 103:865–872

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Sharma A, Gupta MN (2006) Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Anal Biochem 351:207–213

    Article  CAS  PubMed  Google Scholar 

  • Sheldon RA (2007a) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  • Sheldon RA (2007b) Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem Soc Trans 35:1583–1587

    Article  CAS  PubMed  Google Scholar 

  • Sleytr UB, Egelseer E-M, Pum D, Schuster B (2004) S-layers. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley-VCH, Weinheim, pp 77–92

    Chapter  Google Scholar 

  • Sleytr UB, Huber C, Ilk N, Pum D, Schuster B, Egelseer EM (2007) S-layers as a tool kit for nanobiotechnological applications. Microbiol Lett 267:131–144

    Article  CAS  Google Scholar 

  • Tang J, Badelt-Lichtblau H, Ebner A, Preiner J, Kraxberger B, Gruber HJ, Sleytr UB, Ilk N, Hinterdorfer P (2008) Fabrication of highly ordered gold nanoparticle arrays templated by crystalline lattices of bacterial S-layer protein. ChemPhysChem 9:2317–2320

    Article  CAS  PubMed  Google Scholar 

  • Thomsen MS, Nidetzky B (2009) Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes. Biotechnol J 4:98–107

    Article  CAS  PubMed  Google Scholar 

  • Tschiggerl H, Breitwieser A, de Roo G, Verwoerd T, Schäffer C, Sleytr UB (2008) Exploitation of the S-layer self-assembly system for site directed immobilization of enzymes demonstrated for an extremophilic laminarinase from Pyrococcus furiosus. J Biotechnol 133:403–411

    Article  CAS  PubMed  Google Scholar 

  • Vafiadi C, Topakas E, Christakopoulos P (2008) Preparation of multipurpose cross-linked enzyme aggregates and their application to production of alkyl ferulates. J Mol Catal B 54:35–41

    Article  CAS  Google Scholar 

  • Villaverde A, Carrió MM (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 25:1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Wang W-X, Pelah D, Alergand T, Shoseyov O, Altman A (2002) Characterization of SP1, a stress-responsive, boiling-soluble, homo-oligomeric protein from aspen. Plant Physiol 130:865–875

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Dgany O, Wolf SG, Levy I, Algom R, Pouny Y et al (2006) Aspen SP1, an exceptional thermal, protease and detergent-resistant self-assembled nano-particle. Biotechnol Bioeng 95:161–168

    Article  CAS  PubMed  Google Scholar 

  • Wilson L, Illanes A, Pessela BCC, Abian O, Fernández-Lafuente R, Guisán JM (2004) Encapsulation of cross-linked penicillin G acylase aggregates in lentikats: evaluation of a novel biocatalyst in organic media. Biotechnol Bioeng 86(5):558–562

    Article  CAS  PubMed  Google Scholar 

  • Yu HW, Chen H, Wang X, Yang YY, Ching CB (2006) Cross-linked enzyme aggregates (CLEAs) with controlled particles: application to Candida rugosa lipase. J Mol Catal B 43:124–127

    Article  CAS  Google Scholar 

  • Zhao L, Zheng L, Gao G, Jia F, Cao S (2008) Resolution of N-(2-ethyl-6-methylphenyl) alanine via cross-linked aggregates of Pseudomonas sp. lipase. J Mol Catal B 54:7–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.N. and J.N. acknowledge support from a project for scientific and technological co-operation between Austria and Slovakia (SK-AT-0024-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Nidetzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roessl, U., Nahálka, J. & Nidetzky, B. Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett 32, 341–350 (2010). https://doi.org/10.1007/s10529-009-0173-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-0173-4

Keywords

Navigation