Skip to main content
Log in

Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to α-d-glucose-1-phosphate

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Maltodextrin phosphorylase from Pyrococcus furiosus (PF1535) was fused with the cellulose-binding domain of Clostridium cellulovorans serving as an aggregation module. After molecular cloning of the corresponding gene fusion construct and controlled expression in Escherichia coli BL21, 83% of total maltodextrin phosphorylase activity (0.24 U/mg of dry cell weight) was displayed in active inclusion bodies. These active inclusion bodies were easily isolated by nonionic detergent treatment and directly used for maltodextrin conversion to α-d-glucose-1-phosphate in a repetitive batch mode. Only 10% of enzyme activity was lost after ten conversion cycles at optimum conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nahálka J, Shao J, Gemeiner P (2007) Oligosaccharides, neoglycoproteins and humanized plastics: their biocatalytic synthesis and possible medical applications. Biotechnol Appl Biochem 46:1–12

    Article  Google Scholar 

  2. Kayane S, Kawai T, Sakata M, Immamura T, Tanigaki M, Kurosaki T (1996) Immobilized phosphorylase. United States Patent, US005543310A

  3. Weinhaüsel A, Nidetzky B, Kysela C, Kulbe KD (1995) Application of Escherichia coli maltodextrin-phosphorylase for the continuous production of glucose-1-phosphate. Enzyme Microb Technol 17:140–146

    Article  Google Scholar 

  4. Shin HJ, Shin Y, Lee DS (2000) Formation of α-d-glucose-1-phosphate by thermophilic α-1,4-d-glucan phosphorylase. J Ind Microbiol Biotechnol 24:89–93

    Article  CAS  Google Scholar 

  5. Bae J, Lee DH, Kim D, Cho SJ, Park JE, Koh S, Kim J, Park BH, Choi Y, Shin HJ, Hong SI, Lee DS (2005) Facile synthesis of glucose-1-phosphate from starch by Thermus caldophilus GK24 α-glucan phosphorylase. Process Biochem 40:3707–3713

    Article  CAS  Google Scholar 

  6. Chen S, Liu J, Pei H, Li J, Zhou J, Xiang H (2007) Molecular investigation of a novel thermostable glucan phosphorylase from Thermoanaerobacter tengcongensis. Enzyme Microb Technol 41:390–396

    Article  CAS  Google Scholar 

  7. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9

    Article  Google Scholar 

  8. Ventura S, Villaverde A (2006) Protein quality in bacterial inclusion bodies. Trends Biotechnol 24:179–185

    Article  CAS  Google Scholar 

  9. García-Fruitós E, González-Montalbán N, Morell M, Vera A, Ferraz RM, Arís A, Ventura S, Villaverde A (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 4:27

    Article  Google Scholar 

  10. Tokatlidis K, Dhurjati P, Millet J, Beguin P, Aubert JP (1991) High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Lett 282:205–208

    Article  CAS  Google Scholar 

  11. Worrall DM, Goss NH (1989) The formation of biologically active β-galactosidase inclusion bodies in Escherichia coli. Aust J Biotechnol 3:28–32

    CAS  Google Scholar 

  12. Nahálka J, Nidetzky B (2007) Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis d-amino acid oxidase as insoluble enzyme aggregates. Biotechnol Bioeng 97:454–461

    Article  Google Scholar 

  13. Lee HS, Shockley KR, Schut GJ, Conners SB, Montero CI, Johnson MR, Chou CJ, Bridger SL, Wigner N, Brehm SD, Jenney FE, Comfort DA, Kelly RM, Adams MWW (2006) Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 188:2115–2125

    Article  CAS  Google Scholar 

  14. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61

    Article  CAS  Google Scholar 

  15. Xavier KB, Peist R, Kossmann M, Boos W, Santos H (1999) Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes. J Bacteriol 181:3358–3367

    CAS  Google Scholar 

  16. Takata H, Takaha T, Okada S, Takagi M, Imanaka T (1998) Purification and characterisation of α-glucan phosphorylase from Bacillus stearothermophilus. J Ferment Bioeng 85:156–161

    Article  CAS  Google Scholar 

  17. Bibel M, Bretl C, Gosslar U, Kriegshauser G, Liebl W (1998) Isolation and analysis of genes for amylolytic enzymes of the hyperthermophilic bacterium Thermotoga maritima. FEMS Microbiol Lett 158:9–15

    Article  CAS  Google Scholar 

  18. Schiraldy C, Acone M (2001) Innovative fermentation strategies for the production of extremophilic enzymes. Extremophiles 5:193–198

    Article  Google Scholar 

  19. Goedl C, Schwarz A, Minani A, Nidetzky B (2007) Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglucosylation, and application of immobilized enzyme for production of α-d-glucose-1-phosphate. J Biotechnol 129:77–86

    Article  CAS  Google Scholar 

  20. Nahálka J, Gemeiner P (2006) Thermoswitched immobilization––a novel approach in reversible immobilization. J Biotechnol 123:478–482

    Article  Google Scholar 

Download references

Acknowledgments

The expert technical assistance of Radoslava Šályová is gratefully acknowledged. This work was supported by the Slovak Research and Development Agency under a contract no. APVV-51-040205 (http://www.biotec.chem.sk/glyctech).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Nahálka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahálka, J. Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to α-d-glucose-1-phosphate. J Ind Microbiol Biotechnol 35, 219–223 (2008). https://doi.org/10.1007/s10295-007-0287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0287-4

Keywords

Navigation