Skip to main content

Engineering of Immobilized Enzymes: pH, Thermal Stability and Kinetic Aspects

  • Conference paper
  • First Online:
Practical Aspects of Chemical Engineering (PAIC 2019)

Abstract

Enzymes are important catalysts which have gained much attention in various branches of science. The catalytic proteins are immobilized on various materials to increase their resistance to the unfavorable effects of pH, temperature or other denaturants present in the reaction mixture. The heterogeneous form of biocatalytic systems is the most important advantage of the immobilization process, and leads to the prolonging of catalytic activity. This chapter reviews the use of immobilization as a useful technique for improving the thermal and chemical stability of enzymes. Kinetic aspects of the immobilization process are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amin, F., Bhatti, H.N., Bilal, M., Asgher, M.: Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalactofructonase. Int. J. Biol. Marcomol. 95, 974–984 (2017)

    Article  CAS  Google Scholar 

  • Amirkhani, L., Moghaddas, J., Jafarizadeh-Malmiri, H.: Candida rugosa lipase immobilization on magnetic silica aerogel nanodispersion. RSC Adv. 6, 12676–12687 (2016)

    Article  CAS  Google Scholar 

  • Antecka, K., Zdarta, J., Siwińska-Stefańska, K., Sztuk, G., Jankowska, E., Oleskowicz-Popiel, P., Jesionowski, T.: Synergistic degradation of dye wastewaters using binary or ternary oxide systems with immobilized laccase. Catalysts 8, 402–420 (2018)

    Article  CAS  Google Scholar 

  • Barreca, D., Neri, G., Scala, A., Fazio, E., Gentile, D., Rescifina, A., Piperno, A.: Covalently immobilized catalase on functionalized graphene: effect on the activity, immobilization efficiency, and tetramer stability. Biomater. Sci. 6, 3231–3240 (2018)

    Article  PubMed  CAS  Google Scholar 

  • Bilal, M., Zhao, Y., Noreen, S., Shah, S.Z.H., Bharagava, R.N., Iqbal, H.M.N.: Modifying bio-catalytic properties of enzymes for efficient biocatalysis: a review from immobilization strategies vewpoint. Biocatal. Biotransformation 37, 159–182 (2019)

    Article  CAS  Google Scholar 

  • Brena, B.M., Batista-Viera, F.: Immobilization of enzymes. In: Guisan, J.M. (ed.) Methods in Biotechnology: Immobilization of Enzymes and Cells. Humana Press Inc., New York (2006)

    Google Scholar 

  • Cao, L.: Carrier-Bound Immobilized Enzymes. Wiley-VCH, Weinheim (2005)

    Book  Google Scholar 

  • Cornish-Bowden, A.: Current IUBMB recommendations on enzyme nomenclature and kinetics. Perspect. Sci. 1, 74–87 (2014)

    Article  Google Scholar 

  • Chen, J., Leng, J., Yang, X., Liao, L., Liu, L., Xiao, A.: Enhanced performance of magnetic graphene oxide-immobilized laccase and its application for the decolorization of dyes. Molecules 22, 221–232 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  • Chen, Y., Liu, J., Xia, C., Zhao, C., Ren, Z., Zhang, W.: Immobilization of lipase on porous monodisperse chitosan microspheres. Biotechnol. Appl. Biochem. 62, 101–106 (2014)

    Article  PubMed  CAS  Google Scholar 

  • De Maio, A., El-Masry, M.M., Portaccio, M., Diano, N., Di Martino, S., Mattei, A., Bencivenga, U., Mita, D.G.: Influence of the spacer length on the activity of enzymes immobilized on nylon/polyGMA membranes: Part 1. Isothermal conditions. J. Mol. Catal. B Enzymatic 21, 239–252 (2003)

    Google Scholar 

  • Di Martino, S., El-Sheriff, H., Diano, N., De Maio, A., Grano, V., Rossi, S., Bencivenga, U., Mattei, A., Mita, G.: Urea removal from agricultural waste waters by means of urease immobilized on nylon membranes grafted with cyclohexyl-methacrylate. Appl. Catal. B 46, 613–629 (2003)

    Article  CAS  Google Scholar 

  • Faber, K.: Biotransformation in Organic Chemistry. Springer, Heidelberg (2017)

    Google Scholar 

  • Hanefeld, U., Gardossib, L., Magner, E.: Understanding enzyme immobilisation. Chem. Soc. Rev. 38, 453–468 (2008)

    Article  PubMed  Google Scholar 

  • Jiang, Y., Zhai, J., Zhou, L., He, Y., Ma, L., Gao, J.: Enzyme@silica hybrid nanoflowers shielding in polydopamine layer for the improvement of enzyme stability. Biochem. Eng. J. 132, 196–205 (2018)

    Article  CAS  Google Scholar 

  • Jesionowski, T., Zdarta, J., Krajewska, B.: Enzyme immobilization by adsorption. Adsorption 20, 801–821 (2014)

    Article  CAS  Google Scholar 

  • Johnson, K.A., Goody, R.S.: The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50, 8264–8269 (2011)

    Article  PubMed  CAS  Google Scholar 

  • Kolodziejczak-Radzimska, A., Jesionowski, T.: Characterization of amino-, epoxy- and carbonyl-functionalized halloysite and its application in the immobilization of aminoacylase from Aspergillus melleus. Physicochem. Probl. Miner. Process. 55, 128–139 (2019)

    CAS  Google Scholar 

  • Karra-Chaabouni, M., Bouaziz, I., Boufi, S., Botelho do Rego, A.M., Gargouri, Y.: Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: Activity and stability studies. Colloids Surf. B 66, 168–177 (2008)

    Article  CAS  Google Scholar 

  • Lin, Y., Liu, X., Xing, Z., Geng, Y., Wilson, J., Wu, D., Kong, H.: Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles for cellulase immobilization. Cellulose 24, 5541–5550 (2017)

    Article  CAS  Google Scholar 

  • Ling, X.M., Wang, X.Y., Ma, P., Yang, Y., Qin, J.M., Zhang, X.J., Zhang, Y.W.: Covalent immobilization of Penicillin G Acylase onto Fe3O4@chitosan magnetic nanoparticles. J. Microbiol. Biotechnol. 26, 829–836 (2016)

    Article  PubMed  CAS  Google Scholar 

  • Luo, Q., Chen, D., Boom, R.M., Janssen, A.E.M.: Revisiting the enzymatic kinetics of pepsin using isothermal titration calorimetry. Food Chem. 268, 94–100 (2018)

    Article  PubMed  CAS  Google Scholar 

  • Magner, E.: Immobilization of enzymes on mesoporous silicate materials. Chem. Soc. Rev. 42, 6213–6222 (2013)

    Article  PubMed  CAS  Google Scholar 

  • Marangoni, A.G.: Enzyme Kinetics: A Modern Approach. Wiley, Chichester (2002)

    Book  Google Scholar 

  • Mardani, T., Khiabani, M.S., Mokarram, R.R., Hamishehkar, H.: Immobilization of α-amylase on chitosan-montmorillonite nanocomposite beads. Int. J. Biol. Macromol. 120, 354–360 (2018)

    Article  PubMed  CAS  Google Scholar 

  • Marschelke, C., Müller, M., Köpke, D., Matura, A., Sallat, M., Synytska, A.: Hairy particles with immobilized enzymes: impact of particle topology on the catalytic activity. ACS Appl. Mater. Interfaces. 11, 1645–1654 (2019)

    Article  PubMed  CAS  Google Scholar 

  • Marzuki, C.N.H., Mahat, N.A., Huyop, F., Buang, N.A., Wahab, R.A.: Candida rugosa lipase immobilized onto acid-functionalized multi-walled carbon nanotubes for sustainable production of methyl oleate. Appl. Biochem. Biotech. 177, 967–984 (2015)

    Article  CAS  Google Scholar 

  • Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Lafuente, R.F.: Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40, 1451–1463 (2007)

    Article  CAS  Google Scholar 

  • Maryskova, M., Ardao, I., Garcia-Gonzalez, C.A., Martinova, L., Rotkova, J., Sevcu, A.: Polyamide 6/chitosan nanofibers as support for the immobilization of Trametes versicolor laccase for the elimination of endocrine disrupting chemicals. Enzyme Microb. Technol. 89, 31–38 (2016)

    Article  PubMed  CAS  Google Scholar 

  • Michaelis, L., Menten, M.L.: Die Kinetik der Invertinwirkung. Biochem Z 49, 333–369 (1913)

    CAS  Google Scholar 

  • Miller, B.G., Wolfenden, R.: Catalytic proficiency: the unusual case of OMP decarboxylase. Annu. Rev. Biochem. 71, 847–885 (2002)

    Article  PubMed  CAS  Google Scholar 

  • McDonald, A.G., Tipton, K.F.: Fifty-five years of enzyme classification: advances and difficulties. FEBS J. 281, 583–592 (2014)

    Article  PubMed  CAS  Google Scholar 

  • Murray, R.K., Granner, D.K., Mayes, P.A., Podwell, W.V.: Biochemia Harpera. Wydawnictwo Lekarskie PZWL, Warszawa (1995)

    Google Scholar 

  • Nigh, W.G.: A kinetic investigation of an enzyme-catalyzed reaction. J. Chem. Educ. 53, 668–669 (1976)

    Article  CAS  Google Scholar 

  • Northrop, D.B.: On the meaning of Km and V = K in enzyme kinetics. J. Chem. Educ. 75, 1153–1157 (1998)

    Article  CAS  Google Scholar 

  • Osuna, Y., Sandoval, J., Saade, H., López, R.G., Martinez, J.L., Colunga, E.M., de la Cruz, G., Segura, E.P., Arévalo, F.J., Zon, M.A., Fernández, H., Ilyina, A.: Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst. Eng. 38, 1437–1445 (2015)

    Article  PubMed  CAS  Google Scholar 

  • Pleiss, J.: Systematic analysis of large enzyme families: Identification of specificity- and selectivity-determining hotspots. ChemCatChem 6, 944–950 (2014)

    Article  CAS  Google Scholar 

  • Potratz, J.P.: Making enzyme kinetics dynamic via simulation software. J. Chem. Educ. 95, 482–486 (2018)

    Article  CAS  Google Scholar 

  • Porto, M.D.A., dos Santos, J.P., Hackbart, H., Bruni, G.P., Fonseca, L.M., Zavareze, E.R., Dias, A.R.G.: Immobilization of α-amylase in ultrafine polyvinyl alcohol (PVA) fibers via electrospinning and their stability on different substrates. Int. J. Biol. Macromol. 126, 834–841 (2019)

    Article  PubMed  CAS  Google Scholar 

  • Sanjay, G., Sugunan, S.: Acid activated montmorillonite: an efficient immobilization support for improving reusability, storage stability and operational stability of enzymes. J. Porous Mater. 15, 359–367 (2008)

    Article  CAS  Google Scholar 

  • Segal, I.H.: Enzyme Kinetics. Wiley, New York (1975)

    Google Scholar 

  • Song, J.E., Kim, H.R., Lee, S.H.: Effect of enzymatic hydrolysis on developing support of pol amide woven fabric for enzyme immobilization. Text. Res. J. 89, 1345–1360 (2018)

    Article  CAS  Google Scholar 

  • Stryer, L.: Biochemia. Wydawnictwo Naukowe PWN, Warszawa (2003)

    Google Scholar 

  • Tipton, K., Boyce, S.: History of the enzyme nomenclature system. Bioinformatic 16, 34–40 (2000)

    Article  CAS  Google Scholar 

  • Wang, Z.G., Wang, J.Q., Xu, Z.K.: Immobilization of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption. J. Mol. Catal. B 42, 45–51 (2006)

    Article  CAS  Google Scholar 

  • Yuan, Y., Luan, X., Rana, X.K., Hassana, M.E., Dou, D.: Covalent immobilization of cellulase in application of biotransformation of ginsenoside Rb1. J. Mol. Catal. B: Enzymatic 133, S525–S532 (2016)

    Article  Google Scholar 

  • Zare, A., Bordbar, A.K., Razmjou, A., Jafarian, F.: The immobilization of Candida rugosa lipase on the modified polyethersulfone with MOF nanoparticles as an excellent performance bioreactor membrane. J. Biotechnol. 10, 55–63 (2019)

    Article  CAS  Google Scholar 

  • Zdarta, J., Antecka, K., Jędrzak, A., Synoradzki, K., Łuczak, M., Jesionowski, T.: Biopolymers conjugated with magnetite as support materials for trypsin immobilization and protein digestion. Colloids Surf. B Biointerfaces 169, 118–125 (2018a)

    Article  PubMed  CAS  Google Scholar 

  • Zdarta, J., Norman, M., Smułek, W., Moszynski, D., Kaczorek, E., Stelling, A.L., Ehrlich, H., Jesionowski, T.: Spongin-based scaffolds from Hippospongia communis demosponge as an effective support for lipase immobilization. Catalysts 7, 147–167 (2017)

    Article  CAS  Google Scholar 

  • Zdarta, J., Meyer, A.S., Jesionowski, T., Pinelo, M.: Developments in support materials for immobilization of oxidoreductases: a comprehensive review. Adv. Colloid Interface Sci. 258, 1–20 (2018b)

    Article  PubMed  CAS  Google Scholar 

  • Zdarta, J., Meyer, A.S., Jesionowski, T., Pinelo, M.: A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8, 92–109 (2018c)

    Article  CAS  Google Scholar 

  • Zhang, D., Hegab, H.E., Lvov, Y., Snow, L.D., Palmer, J.: Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. Springerplus 5, 48–68 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zivkovic, L.T.I., Zivkovic, L.S., Babicb, B.M., Kokunesoski, M.J., Jokic, B.M., Karadzic, I.M.: Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia. Biochem. Eng. J. 93, 73–83 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish Ministry of Science and Higher Education (Grant No. 0912/SDAB/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Kołodziejczak-Radzimska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kołodziejczak-Radzimska, A., Jesionowski, T. (2020). Engineering of Immobilized Enzymes: pH, Thermal Stability and Kinetic Aspects. In: Ochowiak, M., Woziwodzki, S., Mitkowski, P., Doligalski, M. (eds) Practical Aspects of Chemical Engineering. PAIC 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-39867-5_17

Download citation

Publish with us

Policies and ethics