Skip to main content
Log in

Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Hemicellulose liquid hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol using Pichia stipitis CBS 6054. The fermentation rate increased with aeration but the pH also increased due to consumption of acetic acid by Pichia stipitis. Hemicellulose hydrolyzate containing 34 g/L xylose, 8 g/L glucose, 8 g/L Acetic acid, 0.73 g/L furfural, and 1 g/L hydroxymethyl furfural was fermented to 15 g/L ethanol in 72 h. The yield in all the hemicellulose hydrolyzates was 0.37–0.44 g ethanol/g (glucose + xylose). Nondetoxified hemicellulose hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol with high yields, and this has the potential to improve the economics of the biomass to ethanol process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  Google Scholar 

  2. Chandrakant P, Bisaria VS (1998) Simultaneous conversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18(4):295–331

    Article  CAS  Google Scholar 

  3. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  CAS  Google Scholar 

  4. Kadam KL, McMillan JD (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol 88:17–25

    Article  CAS  Google Scholar 

  5. Schell DJ, Farmer J, Newman M, McMillan JD (2003) Dilute-sulphuric acid pretreatment of corn stover in pilot-scale reactor. Appl Biochem Biotechnol 105–108:69–85

    Article  Google Scholar 

  6. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  7. Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84:5–38

    Article  Google Scholar 

  8. Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591

    Article  CAS  Google Scholar 

  9. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  10. Tucker MP, Kim KH, Newman MM, Nguyen QA (2003) Effects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulose enzyme digestibility. Appl Biochem Biotechnol 105–108:165–177

    Article  Google Scholar 

  11. Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  12. Liu ZL, Slininger PJ, Gorsick SW (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121–124:451–460

    Article  Google Scholar 

  13. Wyman CE (2003) Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol Prog 19:254–262

    Article  CAS  Google Scholar 

  14. Parekh S, Wayman M (1986) Fermentation of cellobiose and wood sugars to ethanol by Candida shehatae and Pichia stipitis. Biotechnol Lett 8:597–600

    Article  CAS  Google Scholar 

  15. Schneider H, Wang PY, Chan YK, Maleszka R (1981) Conversion of d-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol Lett 3:89–92

    Article  CAS  Google Scholar 

  16. du Preez JC, Prior BA (1985) A quantitative screening of some xylose fermenting yeast isolates. Biotechnol Lett 7:241–248

    Article  CAS  Google Scholar 

  17. Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS (2006) Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem 41:2333–2336

    Article  CAS  Google Scholar 

  18. Grootjen DRJ, van der Lans RGJM, Luyben KchAM (1990) Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme Microb Technol 12:20–23

    Article  CAS  Google Scholar 

  19. Skoog K, Hahn-Hagerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56(11):3389–3394

    CAS  Google Scholar 

  20. Klinner U, Fluthgraf S, Freese S, Passoth V (2005) Aerobic induction of respiro-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis. Appl Microbiol Cell Physiol 67:247–253

    Article  CAS  Google Scholar 

  21. Delgenes JP, Moletta R, Navarro JM (1986) The effect of aeration on d-xylose fermentation by Pachysolen tannophilus, Pichia stipitis, Kluyveromyces marxianus and Candida shehatae. Biotechnol Lett 8(12):897–900

    Article  CAS  Google Scholar 

  22. Briunenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1984) NADH-linked aldose reductase: The key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260

    Google Scholar 

  23. van Zyl C, Prior BA, du Preez JC (1988) Production of ethanol from sugar cane bagasse hemicellulose hydrolyzate by Pichia stipitis. Appl Biochem Biotechnol 357–369

  24. Sreenath HK, Jeffries TW (2000) Production of ethanol from wood hydrolyzate by yeasts. Bioresour Technol 253–260

  25. Tran AV, Chambers RP (1985) Red Oak wood derived inhibitors in the ethanol fermentation of xylose in Pichia stipitis CBS 5776. Biotechnol Lett 7(11):841–846

    Article  CAS  Google Scholar 

  26. Liden G, Jacobsson V, Niklasson C (1993) The effect of carbon dioxide on xylose fermentation by Pichia stipitis. Appl Biochem Biotechnol 38:27–40

    Article  CAS  Google Scholar 

  27. Agbogbo FK, Wenger KS (2006) The effect of pretreatment chemicals on xylose fermentation by Pichia stipitis. Biotechnol Lett 28:2065–2069

    Article  CAS  Google Scholar 

  28. Slininger PA, Dien BS, Gorsick SW, Liu ZL (2006) Nitrogen source and mineral optimization enhances d-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Appl Microbiol Cell Physiol 72:1285–1296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by the Abengoa-DOE project. We like to thank Dr. Thomas Jeffries for generously providing the yeast strain, David Milam for analytical support on HPLC and Dr. K. C. McFarland for HMF and furfural analyses. We also like to thank Dr. Guillermo Coward-Kelly, Dr. Mads Torry-Smith and Dr. Frank D. Haagensen for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank K. Agbogbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agbogbo, F.K., Wenger, K.S. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis . J Ind Microbiol Biotechnol 34, 723–727 (2007). https://doi.org/10.1007/s10295-007-0247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0247-z

Keywords

Navigation