Skip to main content
Log in

Detection of Insertions/Deletions Within SIRT1, SIRT2 and SIRT3 Genes and Their Associations with Body Measurement Traits in Cattle

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Growth traits are complex quantitative traits controlled by numerous candidate genes, and they can be well-evaluated using body measurement traits. As the members of the nicotinamide adenine dinucleotide-dependent family of histone deacetylases, class I sirtuin genes (including SIRT1, SIRT2 and SIRT3) play crucial roles in regulating lipid metabolism, cellular growth and metabolism, suggesting that they are potential candidate genes affecting body measurement traits in animals. Hence, the objective of this work aimed to detect novel insertions/deletions (indels) of SIRT1, SIRT2 and SIRT3 genes in 955 cattle belonging to five breeds, as well as to evaluate their effects on body measurement traits. Herein, the novel 12-bp indel of SIRT1 gene, the 7-bp indel of SIRT2 gene and the 26-bp indel of SIRT3 gene were firstly reported, respectively. The association analysis indicated that the indels within SIRT1 and SIRT2 genes were significantly associated with body measurement traits such as body weight, chest circumference, height at hip cross, hip width, body height, etc. (P < 0.05 or P < 0.01). Therefore, based on these findings, the two novel indel variants within bovine SIRT1 and SIRT2 genes could be considered as potential molecular markers for growth traits in cattle selection practices and breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cai H, Wang Z, Lan X, Xu Y, Chen H, Lei C (2016) Indels within the bovine visfatin gene affect its mRNA expression in longissimus muscle and subcutaneous fat. Arch Anim Breed 59:91–95

    Article  Google Scholar 

  • Cha YI, Kim HS (2013) Emerging role of sirtuins on tumorigenesis: possible link between aging and cancer. BMB Rep 46:429–438

    Article  CAS  Google Scholar 

  • Chakrabarti P, Kandror KV (2009) FoxO1 controls insulin-dependent adipose triglyceride lipase (ATGL) expression and lipolysis in adipocytes. J Biol Chem 284:13296–13300

    Article  CAS  Google Scholar 

  • Cheong HS, Yoon DH, Kim LH, Park BL, Choi YH, Chung ER, Cho YM, Park EW, Cheong IC, Oh SJ, Yi SG, Park T, Shin HD (2006) Growth hormone-releasing hormone (GHRH) polymorphisms associated with carcass traits of meat in Korean cattle. BMC Genet 7:35

    Article  Google Scholar 

  • Cui Y, Yan H, Wang K, Xu H, Zhang X, Zhu H, Liu J, Qu L, Lan X, Pan C (2018a) Insertion/deletion within the KDM6A gene is significantly associated with litter size in goat. Front Genet 9:91

    Article  Google Scholar 

  • Cui Y, Zhang Y, Wei Z, Gao J, Yu T, Chen R, Lv X, Pan C (2018b) Pig KDM5B: mRNA expression profiles of different tissues and testicular cells and association analyses with testicular morphology traits. Gene 650:27–33

    Article  CAS  Google Scholar 

  • Figarska SM, Vonk JM, Boezen HM (2013) SIRT1 polymorphism, long-term survival and glucose tolerance in the general population. PLoS ONE 8:e58636

    Article  CAS  Google Scholar 

  • Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798

    Article  CAS  Google Scholar 

  • Gilbert RP, Bailey DR, Shannon NH (1993) Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J Anim Sci 71:1712–1720

    Article  CAS  Google Scholar 

  • Guarani V, Deflorian G, Franco CA, Krüger M, Phng LK, Bentley K, Toussaint L, Dequiedt F, Mostoslavsky R, Schmidt MH, Zimmermann B, Brandes RP, Mione M, Westphal CH, Braun T, Zeiher AM, Gerhardt H, Dimmeler S, Potente M (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473:234–238

    Article  CAS  Google Scholar 

  • Guarente L (2007) Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 72:483–488

    Article  CAS  Google Scholar 

  • Gui L, Hao R, Zhang Y, Zhao X, Zan L (2015) Haplotype distribution in the class I sirtuin genes and their associations with ultrasound carcass traits in Qinchuan cattle (Bos taurus). Mol Cell Probes 29:167–171

    Article  CAS  Google Scholar 

  • Gui L, Hong J, Raza SH, Zan L (2016a) Genetic variants in SIRT3 transcriptional regulatory region affect promoter activity and fat deposition in three cattle breeds. Mol Cell Probes 32:40–45

    Article  Google Scholar 

  • Gui L, Xin X, Wang J, Hong J, Zan L (2016b) Expression analysis, single nucleotide polymorphisms within SIRT4 and SIRT7 genes and their association with body size and meat quality traits in Qinchuan cattle. J Integr Agr 15:2819–2826

    Article  CAS  Google Scholar 

  • Haketa A, Soma M, Nakayama T, Kosuge K, Aoi N, Hishiki M, Hatanaka Y, Ueno T, Doba N, Hinohara S (2013) Association between SIRT2 gene polymorphism and height in healthy, elderly Japanese subjects. Transl Res 161:57–58

    Article  CAS  Google Scholar 

  • Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 103:10230–10235

    Article  CAS  Google Scholar 

  • Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, Stevens RD, Li Y, Saha AK, Ruderman NB, Bain JR, Newgard CB, Farese RV Jr, Alt FW, Kahn CR, Verdin E (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121–125

    Article  CAS  Google Scholar 

  • Hirschey MD, Shimazu T, Huang JY, Schwer B, Verdin E (2011) SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb Symp Quant Biol 76:267–277

    Article  CAS  Google Scholar 

  • Hozumi YG, Gallardo AG, Davalos LG, Antaramian A, Villarroya F, Shimada A, Echavarría AV, Mora O (2011) Bovine sirtuins: initial characterization and expression of sirtuins 1 and 3 in liver, muscle, and adipose tissue. J Anim Sci 89:2529–2536

    Article  Google Scholar 

  • Ibeagha-Awemu EM, Kgwatalala P, Zhao X (2008) A critical analysis of production associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. Mamm Genome 19:591–617

    Article  CAS  Google Scholar 

  • Jia W, Wu X, Li X, Xia T, Lei C, Chen H, Pan C, Lan X (2015) Novel genetic variants associated with mRNA expression of signal transducer and activator of transcription 3 (STAT3) gene significantly affected goat growth traits. Small Ruminant Res 129:25–36

    Article  Google Scholar 

  • Jin Y, Cai H, Liu J, Lin F, Qi X, Bai Y, Lei C, Chen H, Lan X (2016) The 10 bp duplication insertion/deletion in the promoter region within paired box 7 gene is associated with growth traits in cattle. Arch Anim Breed 59:469–476

    Article  Google Scholar 

  • Jing E, Gesta S, Kahn CR (2007) SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab 6:105–114

    Article  CAS  Google Scholar 

  • Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, Kahn CR (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci USA 108:14608–14613

    Article  CAS  Google Scholar 

  • Kida Y, Goligorsky MS (2016) Sirtuins, cell senescence, and vascular aging. Can J Cardiol 32:634–641

    Article  Google Scholar 

  • Koentges C, Pfeil K, Schnick T, Wiese S, Dahlbock R, Cimolai MC, Meyer-Steenbuck M, Cenkerova K, Hoffmann MM, Jaeger C, Odening KE, Kammerer B, Hein L, Bode C, Bugger H (2015) SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol 110:36

    Article  Google Scholar 

  • Krishnan J, Danzer C, Simka T, Ukropec J, Walter KM, Kumpf S, Mirtschink P, Ukropcova B, Gasperikova D, Pedrazzini T, Krek W (2012) Dietary obesity-associated Hif1aactivation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev 26:259–270

    Article  CAS  Google Scholar 

  • Kupis W, Pałyga J, Tomal E, Niewiadomska E (2016) The role of Sirtuins in cellular homeostasis. J Physiol Biochem 72:371–380

    Article  CAS  Google Scholar 

  • Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, McCarthy A, Appleyard V, Murray KE, Baker L, Thompson A, Mathers J, Holland SJ, Stark MJ, Pass G, Woods J, Lane DP, Westwood NJ (2008) Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13:454–463

    Article  CAS  Google Scholar 

  • Lavu S, Boss O, Elliott PJ, Lambert PD (2008) Sirtuins-novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 7:841–853

    Article  CAS  Google Scholar 

  • Li M, Sun X, Hua L, Lai X, Lan X, Lei C, Zhang C, Qi X, Chen H (2013a) SIRT1 gene polymorphisms are associated with growth traits in Nanyang cattle. Mol Cell Probes 27:215–220

    Article  CAS  Google Scholar 

  • Li M, Sun X, Zhang L, Wang J, Huang Y, Sun Y, Hu S, Lan X, Lei C, Chen H (2013b) A novel c.-274C > G polymorphism in bovine SIRT1 gene contributes to diminished promoter activity and is associated with increased body size. Anim Genet 44:584–587

    Article  CAS  Google Scholar 

  • Li M, Sun X, Jiang J, Sun Y, Lan X, Lei C, Zhang C, Chen H (2014) Tetra-primer ARMS-PCR is an efficient SNP genotyping method: an example from SIRT2. Anal Methods 6:1835–1840

    Article  CAS  Google Scholar 

  • Li J, Erdenee S, Zhang S, Wei Z, Zhang M, Jin Y, Wu H, Chen H, Sun X, Xu H, Cai Y, Lan X (2018) Genetic effects of PRNP gene insertion/deletion (indel) on phenotypic traits in sheep. Prion 12:42–53

    Article  CAS  Google Scholar 

  • Lyu SJ, Tian YD, Wang SH, Han RL, Mei XX, Kang XT (2014) A novel 2-bp indel within Krüppel-like factor 15 gene (KLF15) and its associations with chicken growth and carcass traits. Br Poult Sci 55:427–434

    Article  CAS  Google Scholar 

  • Matsushima S, Sadoshima J (2015) The role of sirtuins in cardiac disease. Am J Physiol-Heart C 309:1375–1389

    Article  Google Scholar 

  • Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    Article  CAS  Google Scholar 

  • Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöp MH (2012) Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 92:1479–1514

    Article  CAS  Google Scholar 

  • Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y (2007) Sirt1 modulates premature senescence like phenotype in human endothelial cells. J Mol Cell Cardiol 43:571–579

    Article  CAS  Google Scholar 

  • Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429:771–776

    Article  CAS  Google Scholar 

  • Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana E, Alt FW, Zeiher AM, Dimmeler S (2007) SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21:2644–2658

    Article  CAS  Google Scholar 

  • Revollo JR, Li X (2013) The ways and means that fine tune Sirt1 activity. Trends Biochem Sci 38:160–167

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 3, 3rd edn. Coldspring-Harbour Laboratory Press, Oxford

    Google Scholar 

  • Satoh A, Stein L, Imai S (2011) The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb Exp Pharmacol 206:125–162

    Article  CAS  Google Scholar 

  • Sham P, Bader JS, Craig I, O’Donovan M, Owen M (2002) DNA pooling: a tool for large-scale association studies. Nat Rev Genet 3:862–871

    Article  CAS  Google Scholar 

  • Shi T, Fan GQ, Xiao SD (2010) SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells. J Dig Dis 11:55–62

    Article  CAS  Google Scholar 

  • Shi T, Peng WW, Yan JY, Cai HF, Lan XY, Lei CZ, Bai YY, Chen H (2016a) A novel 17 bp indel in the SMAD3 gene alters transcription level, contributing to phenotypic traits in Chinese cattle. Arch Anim Breed 59:151–157

    Article  Google Scholar 

  • Shi T, Xu Y, Yang M, Huang Y, Lan X, Lei C, Qi X, Yang X, Chen H (2016b) Copy number variations at LEPR gene locus associated with gene expression and phenotypic traits in Chinese cattle. Anim Sci J 87:336–343

    Article  CAS  Google Scholar 

  • Stein S, Schäfer N, Breitenstein A, Besler C, Winnik S, Lohmann C, Heinrich K, Brokopp CE, Handschin C, Landmesser U, Tanner FC, Lüscher TF, Matter CM (2010) SIRT1 reduces endothelial activation without affecting vascular function in ApoE−/− mice. Aging 2:353–360

    Article  CAS  Google Scholar 

  • Sun X, Li M, Hao D, Hua L, Lan X, Lei C, Hu S, Qi X, Chen H (2015) Two novel polymorphisms of bovine SIRT2 gene are associated with higher body weight in Nanyang cattle. Mol Biol Rep 42:729–736

    Article  CAS  Google Scholar 

  • Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Investig 119:2758–2771

    CAS  PubMed  Google Scholar 

  • Tang BL (2016) Sirt1 and the mitochondria. Mol Cells 39:87–95

    Article  CAS  Google Scholar 

  • Wang F, Tong Q (2009) SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARgamma. Mol Biol Cell 20:801–808

    Article  CAS  Google Scholar 

  • Wang F, Nguyen M, Qin FX, Tong Q (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6:505–514

    Article  CAS  Google Scholar 

  • Wang ZN, Li MJ, Lan XY, Li MX, Lei CZ, Chen H (2014) Tetra-primer ARMS-PCR identifies the novel genetic variations of bovine HNF-4α gene associating with growth traits. Gene 546:206–213

    Article  CAS  Google Scholar 

  • Wang X, Yang Q, Wang K, Zhang S, Pan C, Chen H, Qu L, Yan H, Lan X (2017) A novel 12-bp indel polymorphism within the GDF9 gene is significantly associated with litter size and growth traits in goats. Anim Genet 48:735–736

    Article  CAS  Google Scholar 

  • Wei DW, Gui LS, Raza SHA, Zhang S, Khan R, Wang L, Guo HF, Zan LS (2017) NRF1 and ZSCAN10 bind to the promoter region of the SIX1 gene and their effects body measurements in Qinchuan cattle. Sci Rep 7:7867

    Article  Google Scholar 

  • Xu T, Liu J, Yao D, Cai H, Chen H, Zhou H, Lan X (2010) The prophet of PIT1 gene variation and its effect on growth traits in Chinese indigenous goat. J Anim Vet Adv 9:2940–2946

    Article  CAS  Google Scholar 

  • Xu Y, Zhang L, Shi T, Zhou Y, Cai H, Lan X, Zhang C, Lei C, Chen H (2013) Copy number variations of MICAL-L2 shaping gene expression contribute to different phenotypes of cattle. Mamm Genome 24:508–516

    Article  CAS  Google Scholar 

  • Xu H, Zhang S, Zhang X, Dang R, Lei C, Chen H, Lan X (2017) Evaluation of novel SNPs and haplotypes within the ATBF1 gene and their effects on economically important production traits in cattle. Arch Anim Breed 60:285–296

    Article  Google Scholar 

  • Yang Q, Zhang S, Liu L, Cao X, Lei C, Qi X, Lin F, Qu W, Qi X, Liu J, Wang R, Chen H, Lan X (2016) Application of mathematical expectation (ME) strategy for detecting low frequency mutations: an example for evaluating 14 bp insertion/deletion (indel) within the bovine PRNP gene. Prion 10:409–419

    Article  CAS  Google Scholar 

  • Yang Q, Yan H, Li J, Xu H, Wang K, Zhu H, Chen H, Qu L, Lan X (2017) A novel 14-bp duplicated deletion within goat GHR gene is significantly associated with growth traits and litter size. Anim Genet 48:499–500

    Article  CAS  Google Scholar 

  • Zhang S, Dang Y, Zhang Q, Qin Q, Lei C, Chen H, Lan X (2015) Tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) rapidly identified a critical missense mutation (P236T) of bovine ACADVL gene affecting growth traits. Gene 559:184–188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31672400), the program of National Beef Cattle and Yak Industrial Technology System (No. CARS-37) and the National Project of Scientific Innovation Experiment for Undergraduate of Northwest A&F University (201710712013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyong Lan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Yang, Q., Gao, J. et al. Detection of Insertions/Deletions Within SIRT1, SIRT2 and SIRT3 Genes and Their Associations with Body Measurement Traits in Cattle. Biochem Genet 56, 663–676 (2018). https://doi.org/10.1007/s10528-018-9868-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-018-9868-3

Keywords

Navigation