Skip to main content

Advertisement

Log in

Defining a New Candidate Gene for Amelogenesis Imperfecta: From Molecular Genetics to Biochemistry

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Amelogenesis imperfecta is a group of genetic conditions that affect the structure and clinical appearance of tooth enamel. The types (hypoplastic, hypocalcified, and hypomature) are correlated with defects in different stages of the process of enamel synthesis. Autosomal dominant, recessive, and X-linked types have been previously described. These disorders are considered clinically and genetically heterogeneous in etiology, involving a variety of genes, such as AMELX, ENAM, DLX3, FAM83H, MMP-20, KLK4, and WDR72. The mutations identified within these causal genes explain less than half of all cases of amelogenesis imperfecta. Most of the candidate and causal genes currently identified encode proteins involved in enamel synthesis. We think it is necessary to refocus the search for candidate genes using biochemical processes. This review provides theoretical evidence that the human SLC4A4 gene (sodium bicarbonate cotransporter) may be a new candidate gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abuladze N, Song M, Pushkin A, Newman D, Lee I, Nicholas S, Kurtz I (2000) Structural organization of the human NBC1 gene: kNBC1 is transcribed from an alternative promoter in intron 3. Gene 251:109–122

    Article  CAS  PubMed  Google Scholar 

  • Aldred MJ, Crawford PJM, Roberts E, Thomas NST (1992a) Identification of a nonsense mutation in the amelogenin gene (AMELX) in a family with X-linked amelogenesis imperfecta (AIH1). Hum Genet 90:413–416

    Article  CAS  PubMed  Google Scholar 

  • Aldred MJ, Crawford PJM, Roberts E, Gillespie CM, Thomas NST, Fenton I, Sandkuijl LA, Hart PS (1992b) Genetic heterogeneity in X-linked amelogenesis imperfecta. Genomics 14:567–573

    Article  CAS  PubMed  Google Scholar 

  • Aldred MJ, Savarirayan R, Crawford PJM (2003) Amelogenesis imperfecta: a classification and catalogue for the 21st century. Oral Dis 9:19–23

    Article  CAS  PubMed  Google Scholar 

  • Arquitt CK, Boyd C, Wright JT (2002) Cystic fibrosis transmembrane regulator gene (CFTR) is associated with abnormal enamel formation. J Dent Res 81:492–496

    Article  CAS  PubMed  Google Scholar 

  • Bäckman B, Holmgren G (1988) Amelogenesis imperfecta: a genetic study. Hum Hered 38:89–206

    Google Scholar 

  • Burnham CE, Amlal H, Wang Z, Shull GE, Soleimani M (1997) Cloning and functional expression of a human kidney Na+HCO 3 cotransporter. J Biol Chem 272:19111–19114

    Article  CAS  PubMed  Google Scholar 

  • Chabora AJ, Berkman MD, Horowitz SL, Nahoum HI (1972) Hereditary hypocalcified amelogenesis imperfecta. Pedigree analysis. Oral Surg Oral Med Oral Pathol 33:922–925

    Article  CAS  PubMed  Google Scholar 

  • Chapman VM, Keitz B, Disteche CM, Lau EC, Snead ML (1991) Linkage of amelogenin Amel to the distal portion of the mouse X chromosome. Genomics 10:23–28

    Article  CAS  PubMed  Google Scholar 

  • Collier PM, Sauk JJ, Rosenbloom J, Yuan ZA, Gibson CW (1997) An amelogenin gene defect associated with human X-linked amelogenesis imperfecta. Arch Oral Biol 42:235–242

    Article  CAS  PubMed  Google Scholar 

  • Crawford PJM, Aldred M, Bloch-Zupan A (2007) Amelogenesis imperfecta. Orphanet J Rare Dis 2:17–28

    Article  PubMed  Google Scholar 

  • Dinour D, Chang MH, Satoh J, Smith BL, Angle N, Knecht A, Serban I, Holtzman EJ, Romero MF (2004) A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects. J Biol Chem 279:52238–52246

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Amor D, Aldred MJ, Gu TT, Escamilla M, MacDougall M (2005) DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am J Med Genet A 133:138–141

    Google Scholar 

  • Downey ML, Keen JT, Jalili IK, McHale J, Aldred MJ, Robertson SP (2002) Identification of a locus on chromosome 2q11 at which recessive amelogenesis imperfecta and cone-rod dystrophy cosegregate. Eur J Hum Genet 10:865–869

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed W, Parry DA, Shore RC, Ahmed M, Jafri H, Rashid Y, Al-Bahlani S, Harasi S, Kirkham J, Inglehearn CF, Mighell AJ (2009) Mutations in beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta. Am J Hum Genet 85:1–7

    Article  CAS  Google Scholar 

  • El-Sayed W, Parry DA, Shore RC, Inglehearn CF, Mighell AJ (2010) Ultrastructural analyses of deciduous teeth affected by hypocalcified amelogenesis imperfecta from a family with a novel Y458X FAM83H nonsense mutation. Cells Tissues Organs 191:235–239

    Article  CAS  PubMed  Google Scholar 

  • Gawenis LR, Bradford EM, Prasad V, Lorenz JN, Simpson JE, Clarke LL, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE (2007) Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO 3 cotransporter. J Biol Chem 282:9042–9052

    Article  CAS  PubMed  Google Scholar 

  • Giansanti JS (1973) A kindred showing hypocalcified amelogenesis imperfecta: report of case. J Am Dent Assoc 86:675–678

    CAS  PubMed  Google Scholar 

  • Gibson CW, Yuan Z, May B, Longenecker G, Chen E, Thyagarajan T, Sreenath T, Wrigt JT, Decker S, Piddington R, Harrison G, Kulkarni AB (2001) Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 276:31871–31875

    Article  CAS  PubMed  Google Scholar 

  • Greene SR, Yuan ZA, Wright JT, Amjad H, Abrams WR, Buchanan JA, Trachtenberg DI, Gibson CW (2002) A new frameshift mutation encoding a truncated amelogenin leads to X-linked amelogenesis imperfecta. Arch Oral Biol 47:211–217

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez SJ, Chaves M, Torres DM, Briceño I (2007) Identification of a novel mutation in the enamelin gene in a family with autosomal-dominant amelogenesis imperfecta. Arch Oral Biol 52:503–506

    Article  PubMed  CAS  Google Scholar 

  • Hart S, Hart T, Gibson C, Wright JT (2000) Mutational analysis of X-linked amelogenesis imperfecta in multiple families. Arch Oral Biol 45:79–86

    Article  CAS  PubMed  Google Scholar 

  • Hart PS, Aldred MJ, Crawford PJM, Wright NJ, Hart TC, Wright JT (2002) Amelogenesis imperfecta phenotype-genotype correlations with two amelogenin gene mutations. Arch Oral Biol 47:261–265

    Article  CAS  PubMed  Google Scholar 

  • Hart PS, Wright JT, Savage M, Bensen JT, Gorry MC, Hart TC (2003a) Exclusion of candidate of genes in two families with autosomal dominant hypocalcified amelogenesis imperfecta. Eur J Oral Sci 111:326–331

    Article  CAS  PubMed  Google Scholar 

  • Hart TC, Hart PS, Gorry MC, Michalec MD, Ryu OH, Uygur C (2003b) Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects. J Med Genet 40:900–906

    Article  CAS  PubMed  Google Scholar 

  • Hart PS, Hart TC, Michalec MD, Ryu OH, Simmons D, Hong S (2004) Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J Med Genet 41:545–549

    Article  CAS  PubMed  Google Scholar 

  • Hart PS, Becerik S, Cogulu D, Emingil G, Ozdemir-Ozenen D, Han ST, Sulima PP, Firatli E, Hart TC (2009) Novel FAM83H mutations in Turkish families with autosomal dominant hypocalcified amelogenesis imperfecta. Clin Genet 75:401–404

    Article  CAS  PubMed  Google Scholar 

  • Hyun HK, Lee SK, Lee KE, Kang HY, Kim EJ, Choung PH, Kim JW (2009) Identification of a novel FAM83H mutation and microhardness of an affected molar in autosomal dominant hypocalcified amelogenesis imperfecta. Int Endod J 42:1039–1043

    Article  PubMed  Google Scholar 

  • Inatomi J, Horita S, Braverman N, Sekine T, Yamada H, Suzuki Y, Kawahara K, Moriyama N, Kudo A, Kawakami H, Shimadzu M, Endou H, Fujita T, Seki G, Igarashi T (2004) Mutational and functional analysis of SLC4A4 in a patient with proximal renal tubular acidosis. Pflugers Arch 448:438–444

    Article  CAS  PubMed  Google Scholar 

  • Kang HY, Seymen F, Lee SK, Yildirim M, Bahar Tuna E, Patir A, Lee KE, Kim JW (2009) Candidate gene strategy reveals ENAM mutations. J Dent Res 88:266–269

    CAS  PubMed  Google Scholar 

  • Kida M, Ariga T, Shirakawa T, Oguchi H, Sakiyama Y (2002) Autosomal-dominant hypoplastic form of amelogenesis imperfecta caused by an enamelin gene mutation al the exon-intron boundary. J Dent Res 81:738–742

    Article  CAS  PubMed  Google Scholar 

  • Kida M, Sakiyama Y, Matsuda A, Takabayashi S, Ochi H, Sekiguchi H, Minamitake S, Ariga T (2007) A novel missense mutation (p.P52R) in amelogenin gene causing X-linked amelogenesis imperfecta. J Dent Res 86:69–72

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Simmer JP, Hu YY, Lin BPL, Boyd C, Wright JT, Yamada CJM, Rayes SK, Feirgal RJ, Hu JCC (2004) Amelogenin p.M1T and p.W4S mutations underlaying hypoplastic X-linked amelogenesis imperfecta. J Dent Res 83:378–383

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Seymen F, Lin BPJ, Kiziltan B, Gencay K, Simmer JP (2005a) ENAM mutations in autosomal dominant amelogenesis imperfecta. J Dent Res 84:278–282

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Simmer JP, Hart TC, Hart PS, Ramaswami MD, Bartlett JD (2005b) MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. J Med Genet 42:271–275

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Simmer JP, Lin BPL, Seymen F, Bartlett JD, Hu JCC (2006) Mutational analysis of candidate genes in 24 amelogenesis imperfect families. Eur J Oral Sci 114(Suppl 1):3–12

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Lee SK, Lee ZH, Park JC, Lee KE, Lee MH, Park JT (2008) FAM83H mutations in families with autosomal dominant hypocalcified amelogenesis imperfect. Am J Hum Genet 82:489–494

    Article  CAS  PubMed  Google Scholar 

  • Kindelan SA, Brook AH, Gangemi L, Lench N, Wong FSL, Fearne J, Jackson Z, Foster G, Stringer BMJ (2000) Detection of a novel mutation in X-linked amelogenesis imperfecta. J Dent Res 79:1978–1982

    Article  CAS  PubMed  Google Scholar 

  • Lagerström M, Dhal N, Iselius L, Bäckman B, Pettersson U (1990) Mapping of the gene for X-linked amelogenesis imperfecta by linkage analysis. Am J Hum Genet 46:120–125

    PubMed  Google Scholar 

  • Lagerström M, Dhal N, Nakahori Y, Makagome Y, Bäckman B, Landegren U, Pettersson U (1991) A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics 10:971–975

    Article  PubMed  Google Scholar 

  • Lagerström-Fermér M, Nilsson M, Bäckman B, Salido E, Shapiro LJ, Pettersson U, Landegren U (1995) Amelogenin signal peptide mutation: Correlation between mutation in the amelogenin gene (AMGX) and manifestations of X-linked amelogenesis imperfecta. Genomics 26:159–162

    Article  PubMed  Google Scholar 

  • Lee SK, Hu JC, Bartlett JD, Lee KE, Lin BPJ, Simmer JP, Kim JW (2008a) Mutational spectrum of FAM83H: the C-terminal portion is required for tooth enamel calcification. Hum Mutat 29:E95–E99

    Article  PubMed  Google Scholar 

  • Lee SK, Lee ZH, Lee SJ, Ahn BD, Kim YJ, Lee SH, Kim JW (2008b) DLX3 mutation in a new family and its phenotypic variations. J Dent Res 87:354–357

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Seymen F, Kang HY, Lee KE, Gencay B, Tuna B, Kim JW (2010) MMP-20 hemopexina domain mutation in amelogenesis imperfecta. J Dent Res 89:46–50

    Article  CAS  PubMed  Google Scholar 

  • Lench NJ, Winter GB (1995) Characterization of molecular defects in X-linked amelogenesis imperfecta (AIH1). Hum Mutat 5:251–259

    Article  CAS  PubMed  Google Scholar 

  • Lench NJ, Brook AH, Winter GB (1994) SSCP detection of a nonsense mutation in exon 5 of the amelogenin gene (AMGX) causing X-linked amelogenesis imperfecta (AIH1). Hum Mol Genet 3:827–828

    Article  CAS  PubMed  Google Scholar 

  • Lézot F, Thomas B, Greene SR, Hotton D, Yuan ZA, Castaneda B (2008) Physiological implications of DLX homeoproteins in enamel formation. J Cell Physiol 216:688–697

    Article  PubMed  CAS  Google Scholar 

  • Lyaruu DM, Bronckers AL, Mulder L, Mardones P, Medina JF, Kellokumpu S, Oude Elferink RP, Everts V (2008) The anion exchanger Ae2 is required for enamel maturation in mouse teeth. Matrix Biol 27:119–127

    Article  CAS  PubMed  Google Scholar 

  • Mardh CK, Bäckman B, Holmgren G, Hu JCC, Simmer JP, Forsman-Semb K (2002) A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2). Hum Mol Genet 11:1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Mendoza G, Pemberton TJ, Lee K, Scarel-Caminaga R, Shai RM, Gonzalez-Quevedo C (2007) A new locus for autosomal dominant amelogenesis imperfecta on chromosome 8q243. Hum Genet 120:653–662

    Article  CAS  PubMed  Google Scholar 

  • Michaelides M, Bloch-Zupan A, Holder GE, Hunt DM, Moore AT (2004) An autosomal recessive cone-rod dystrophy associated with amelogenesis imperfecta. J Med Genet 41:468–473

    Article  CAS  PubMed  Google Scholar 

  • Neville B, Damm D, Allen C, Bouquot J (1995) Oral and maxillofacial pathology. W B Saunders Co, Philadelphia, pp 374–376

    Google Scholar 

  • Ozdemir D, Hart PS, Firatli E, Aren G, Ryu OH, Hart TC (2005a) Phenotype of ENAM mutations is dosage-dependent. J Dent Res 84:1036–1041

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir D, Hart PS, Ryu OH, Choi SJ, Ozdemir-Karatas M, Firatli E (2005b) MMP20 active-site mutation in hypomaturation amelogenesis imperfecta. J Dent Res 84:1031–1035

    Article  CAS  PubMed  Google Scholar 

  • Paine ML, Snead ML, Wang HJ, Abuladze N, Pushkin A, Liu W, Kao LY, Wall SM, Kim YH, Kurtz I (2008) Role of NBCe1 and AE2 in secretory ameloblasts. J Dent Res 87:391–395

    Article  CAS  PubMed  Google Scholar 

  • Papagerakis P, Lin HK, Lee KY, Hu Y, Simmer JP, Bartlett JD, Hu JC (2008) Premature stop codon in MMP-20 causing amelogenesis imperfecta. J Dent Res 87:56–59

    Article  CAS  PubMed  Google Scholar 

  • Pavlic A, Lukinmaa PL, Nieminen P, Kiukkonen A, Alaluusua S (2007) Severely hypoplastic amelogenesis imperfecta with taurodontism. Int J Paediatr Dent 17:259–266

    Article  PubMed  Google Scholar 

  • Pushkin A, Kurtz I (2006) SLC4 base (HCO 3 , CO −23 ) transporters: classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol 290:F580–F599

    Article  CAS  PubMed  Google Scholar 

  • Rajpar MH, Harley K, Laing C, Davies RM, Dixon MJ (2001) Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta. Hum Mol Genet 10:1673–1677

    Article  CAS  PubMed  Google Scholar 

  • Ravassipour DB, Hart PS, Hart TC, Ritter AV, Yamauchi M, Gibson C, Wrigth JT (2000) Unique enamel phenotype associated with amelogenin gene (AMELX) codon 41 point mutation. J Dent Res 79:1476–1481

    Article  CAS  PubMed  Google Scholar 

  • Santos M, Hart PS, Ramaswami M, Kanno C, Hart TC, Line S (2007) Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta. Head Face Med 3:8–15

    Article  PubMed  Google Scholar 

  • Sapp P, Eversole L, Wysocki G (1998) Patología oral y maxilofacial contemporánea. Harcourt Brace, España

    Google Scholar 

  • Sauk JJ, Lyon HW, Witkop CJ (1972) Electron optic microanalysis of two gene products in enamel of females heterozygous for X-linked hypomaturation amelogenesis imperfecta. Am J Hum Genet 24:267–276

    PubMed  Google Scholar 

  • Sekiguchi H, Kiyoshi M, Yakushiiji M (2001) DNA diagnosis of X-linked amelogenesis imperfecta using PCR detection method of the human amelogenin gene. Dent Jpn 37:109–112

    Google Scholar 

  • Simmer JP, Fincham AG (1995) Molecular mechanism of dental enamel formation. Crit Rev Oral Biol Med 6:84–108

    Article  CAS  PubMed  Google Scholar 

  • Smith CE, Chong DL, Bartlett JD, Margolis HC (2005) Mineral acquisition rates in developing enamel on maxillary and mandibular incisors of rats and mice: implications to extracellular acid loading as apatite crystals mature. J Bone Miner Res 20:240–249

    Article  CAS  PubMed  Google Scholar 

  • Stephanopoulos G, Garefalaki ME, Lyroudia K (2005) Genes and related proteins involved in amelogenesis imperfecta. J Dent Res 84:1117–1126

    Article  CAS  PubMed  Google Scholar 

  • Sui W, Boyd C, Wright JT (2003) Altered pH regulation during enamel development in the cystic fibrosis mouse incisor. J Dent Res 82:388–392

    Article  CAS  PubMed  Google Scholar 

  • Ten Cate AR (1998) Oral histology: development structure, and function. Mosby, St. Louis

    Google Scholar 

  • Winsnes A, Monn E, Stokke O, Feyling T (1979) Congenital persistent proximal type renal tubular acidosis in two brothers. Acta Paediatr Scand 68:861–868

    Article  CAS  PubMed  Google Scholar 

  • Witkop CJ (1989) Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol 17:547–553

    Article  Google Scholar 

  • Wright JT (2006) The molecular etiologies and associated phenotypes of amelogenesis imperfecta. Am J Med Genet A 140:2547–2555

    PubMed  Google Scholar 

  • Wright JT, Aldred MJ, Crawford PJM, Kirkham J, Robinson C (1993a) Enamel ultrastructure and protein content in X-linked amelogenesis imperfecta. Oral Surg Oral Med Oral Pathol 76:192–199

    Article  CAS  PubMed  Google Scholar 

  • Wright JT, Duggal MS, Robinson C, Kirkham J, Shore R (1993b) The mineral composition and enamel ultrastructure of hypocalcified amelogenesis imperfecta. J Craniofac Genet Dev Biol 13:117–126

    CAS  PubMed  Google Scholar 

  • Wright JT, Hall K, Yamauchi M (1997) The protein composition of normal and developmentally defective enamel. In: Chadwick DJ, Cardew G (eds) Dental enamel. Wiley, Chichester, pp 85–106

    Google Scholar 

  • Wright JT, Hart PS, Aldred MJ, Seow K, Crawford PJM, Hong SP, Gibson CW, Hart TC (2003) Relationship of phenotype and genotype in X-linked amelogenesis imperfecta. Connect Tissue Res 44(Suppl 1):72–78

    CAS  PubMed  Google Scholar 

  • Wright JT, Hong SP, Simmons D, Daly B, Uebelhart D, Luder HU (2008) DLX3 c561_562delCT mutations causes attenuated phenotype of tricho-dento-osseus syndrome. Am J Med Genet A 146:343–349

    PubMed  Google Scholar 

  • Wright JT, Frazier-Bowers S, Simmons D, Alexander K, Crawford P, Han ST, Hart PS, Hart TC (2009) Phenotypic variations in FAM83H-associated amelogenesis imperfecta. J Dent Res 88:356–360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by grants PRI-ODO 07/03 and FIOUCh 09-1 from the Faculty of Dentistry of the University of Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca Urzúa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urzúa, B., Ortega-Pinto, A., Morales-Bozo, I. et al. Defining a New Candidate Gene for Amelogenesis Imperfecta: From Molecular Genetics to Biochemistry. Biochem Genet 49, 104–121 (2011). https://doi.org/10.1007/s10528-010-9392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-010-9392-6

Keywords

Navigation