Skip to main content

Advertisement

Log in

A new locus for autosomal dominant amelogenesis imperfecta on chromosome 8q24.3

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Amelogenesis imperfecta (AI) is a collective term used to describe phenotypically diverse forms of defective tooth enamel development. AI has been reported to exhibit a variety of inheritance patterns, and several loci have been identified that are associated with AI. We have performed a genome-wide scan in a large Brazilian family segregating an autosomal dominant form of AI and mapped a novel locus to 8q24.3. A maximum multipoint LOD score of 7.5 was obtained at marker D8S2334 (146,101,309 bp). The disease locus lies in a 1.9 cM (2.1 Mb) region according to the Rutgers Combined Linkage-Physical map, between a VNTR marker (at 143,988,705 bp) and the telomere (146,274,826 bp). Ten candidate genes were identified based on gene ontology and microarray-facilitated gene selection using the expression of murine orthologues in dental tissue, and examined for the presence of a mutation. However, no causative mutation was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aldred MJ, Savarirayan R, Crawford PJM (2003) Amelogenesis imperfecta: a classification and catalogue for the 21st century. Oral Dis 9:19–23

    Article  PubMed  CAS  Google Scholar 

  • Aubin I, Adams CP, Opsahl S, Septier D, Bishop CE, Auge N, Salvayre R, Negre-Salvayre A, Goldberg M, Guenet J-L, Poirier C (2005) A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat Genet 37:803–805

    Article  PubMed  CAS  Google Scholar 

  • Backman B, Holm AK (1986) Amelogenesis imperfecta: prevalence and incidence in a northern Swedish county. Community Dent Oral Epidemiol 14:43–47

    Article  PubMed  CAS  Google Scholar 

  • Bartlett JD, Simmer JP, Xue J, Margolis HC, Moreno EC (1996) Molecular cloning and mRNA tissue distribution of a novel matrix metalloproteinase isolated from porcine enamel organ. Gene 183:123–128

    Article  PubMed  CAS  Google Scholar 

  • Bartlett JD, Skobe Z, Lee DH, Wright JT, Li Y, Kulkarni AB, Gibson CW (2006) A developmental comparison of matrix metalloproteinase-20 and amelogenin null mouse enamel. Eur J Oral Sci 114:18–23

    Article  PubMed  CAS  Google Scholar 

  • Beniash E, Skobe Z, Bartlett JD (2006) Formation of the dentino-enamel interface in enamelysin (MMP-20)-deficient mouse incisors. Eur J Oral Sci 114:24–29

    Article  PubMed  CAS  Google Scholar 

  • Burstein E, Hoberg JE, Wilkinson AS, Rumble JM, Csomos RA, Komarck CM, Maine GN, Wilkinson JC, Mayo MW, Duckett CS (2005) COMMD proteins, a novel family of structural and functional homologs of MURR1. J Biol Chem 280:22222–22232

    Article  PubMed  CAS  Google Scholar 

  • Caterina J, Shi J, Krakora S, Bartlett JD, Engler JA, Kozak CA, Birkedal-Hansen H (1999) Isolation, characterization, and chromosomal location of the mouse enamelysin gene. Genomics 62:308–311

    Article  PubMed  CAS  Google Scholar 

  • Chosack A, Eidelman E, Wisotski I, Cohen T (1979) Amelogenesis imperfecta among Israeli Jews and the description of a new type of local hypoplastic autosomal recessive amelogenesis imperfecta. Oral Surg Oral Med Oral Pathol 47:148–156

    PubMed  Google Scholar 

  • Coffield KD, Phillips C, Brady M, Roberts MW, Strauss RP, Wright JT (2005) The psychosocial impact of developmental dental defects in people with hereditary amelogenesis imperfecta. J Am Dent Assoc 136:620–630

    PubMed  Google Scholar 

  • Cottingham RWJ, Idury RM, Schaffer AA (1993) Faster sequential genetic linkage computations. Am J Hum Genet 53:252–263

    PubMed  Google Scholar 

  • Dantonel J-C, Murthy KGK, Manley JL, Tora L (1997) Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 389:399–402

    Article  PubMed  ADS  CAS  Google Scholar 

  • Dong J, Gu TT, Simmons D, MacDougall M (2000) Enamelin maps to human chromosome 4q21 within the autosomal dominant amelogenesis imperfecta locus. Eur J Oral Sci 108:353–358

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Amor D, Aldred MJ, Gu T, Escamilla M, MacDougall M (2005) DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am J Med Genet Part A 133A:138–141

    Article  Google Scholar 

  • Dufner-Beattie J, Wang F, Kuo Y-M, Gitschier J, Eide D, Andrews GK (2003) The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem 278:33474–33481

    Article  PubMed  CAS  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nuc Acids Res 30:207–210

    Article  CAS  Google Scholar 

  • Espiritu-Santo AR, Line SRP (2005) The enamel organic matrix: structure and function. Braz. J Oral Sci 4:716–724

    Google Scholar 

  • Fong CD, Hammarstrom L (2000) Expression of amelin and amelogenin in epithelial root sheath remnants of fully formed rat molars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90:218–223

    PubMed  CAS  Google Scholar 

  • Fujiwara S, Takeo N, Otani Y, Parry DAD, Kunimatsu M, Lu R, Sasaki M, Matsuo N, Khaleduzzaman M, Yoshioka H (2001) Epiplakin, a novel member of the Plakin family originally identified as a 450-kDa human epidermal autoantigen. Structure and tissue localization. J Biol Chem 276:13340–13347

    Article  PubMed  CAS  Google Scholar 

  • Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini A, Sawitzki G, Smith C, Smyth G, Tierney L, Yang J, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  Google Scholar 

  • Ghoul-Mazgar S, Hotton D, Lezot F, Blin-Wakkach C, Asselin A, Sautier JM, Berdal A (2005) Expression pattern of Dlx3 during cell differentiation in mineralized tissues. Bone 37:799–809

    Article  PubMed  CAS  Google Scholar 

  • Hart PS, Hart TC, Michalec MD, Ryu OH, Simmons D, Hong S, Wright JT (2004) Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J Med Genet 41:545–549

    Article  PubMed  CAS  Google Scholar 

  • Hart TC, Hart PS, Gorry MC, Michalec MD, Ryu OH, Uygur C, Ozdemir D, Firatli S, Aren G, Firatli E (2003) Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects. J Med Genet 40:900–906

    Article  PubMed  CAS  Google Scholar 

  • Horer J, Blum R, Feick P, Nastainczyk W, Schulz I (1999) A comparative study of rat and human Tmp21 (p23) reveals the pseudogene-like features of human Tmp21-II. DNA Seq 10:121–126

    PubMed  CAS  Google Scholar 

  • Horie M, Okutomi K, Taniguchi Y, Ohbuchi Y, Suzuki M, Takahashi E-i (1998) Isolation and characterization of a new member of the human Ly6 gene family (LY6H). Genomics 53:365–368

    Article  PubMed  CAS  Google Scholar 

  • Hu CC, Fukae M, Uchida T, Qian Q, Zhang CH, Ryu OH, Tanabe T, Yamakoshi Y, Murakami C, Dohi N, Shimizu M, Simmer JP (1997) Cloning and characterization of porcine enamelin mRNAs. J Dent Res 76:1720–1729

    PubMed  CAS  Google Scholar 

  • Hu JC, Sun X, Zhang C, Liu S, Bartlett JD, Simmer JP (2002) Enamelysin and kallikrein-4 mRNA expression in developing mouse molars. Eur J Oral Sci 110:307–315

    Article  PubMed  CAS  Google Scholar 

  • Hu JC, Zhang CH, Yang Y, Karrman-Mardh C, Forsman-Semb K, Simmer JP (2001) Cloning and characterization of the mouse and human enamelin genes. J Dent Res 80:898–902

    PubMed  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostat 4:249–264

    Article  MATH  Google Scholar 

  • Jang S-I, Kalinin A, Takahashi K, Marekov LN, Steinert PM (2005) Characterization of human epiplakin: RNAi-mediated epiplakin depletion leads to the disruption of keratin and vimentin IF networks. J Cell Sci 118:781–793

    Article  PubMed  CAS  Google Scholar 

  • Kataoka K, Han S-i, Shioda S, Hirai M, Nishizawa M, Handa H (2002) MafA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene. J Biol Chem 277:49903–49910

    Article  PubMed  CAS  Google Scholar 

  • Kim J-W, Simmer JP, Lin BPL, Seymen F, Bartlett JD, Hu JCC (2006) Mutational analysis of candidate genes in 24 amelogenesis imperfecta families. Eur J Oral Sci 114:3–12

    Article  PubMed  CAS  Google Scholar 

  • Kong X, Murphy K, Raj T, He C, White PS, Matise TC (2004) A combined linkage-physical map of the human genome. Am J Hum Genet 75:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Lagerstrom M, Dahl N, Nakahori Y, Nakagome Y, Backman B, Landegren U, Pettersson U (1991) A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics 10:971–975

    Article  PubMed  CAS  Google Scholar 

  • Lewis TB, Wood S, Michaelis EK, DuPont BR, Leach RJ (1996) Localization of a gene for a glutamate binding subunit of a NMDA receptor (GRINA) to 8q24. Genomics 32:131–133

    Article  PubMed  CAS  Google Scholar 

  • Llano E, Pendas AM, Knauper V, Sorsa T, Salo T, Salido E, Murphy G, Simmer JP, Bartlett JD, Lopez-Otin C (1997) Identification and structural and functional characterization of human enamelysin (MMP-20). Biochemistry 36:15101–15108

    Article  PubMed  CAS  Google Scholar 

  • Luo W, Wen X, Wang HJ, MacDougall M, Snead ML, Paine ML (2004) In vivo overexpression of Tuftelin in the enamel organic matrix. Cells Tiss Organs 177:212–220

    Article  CAS  Google Scholar 

  • Nagano T, Oida S, Ando H, Gomi K, Arai T, Fukae M (2003) Relative levels of mRNA encoding enamel proteins in enamel organ epithelia and odontoblasts. J Dent Res 82:982–986

    PubMed  CAS  Google Scholar 

  • O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266

    Article  PubMed  CAS  Google Scholar 

  • Ohishi K, Inoue N, Maeda Y, Takeda J, Riezman H, Kinoshita T (2000) Gaa1p and Gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins. Mol Biol Cell 11:1523–1533

    PubMed  CAS  Google Scholar 

  • Ozdemir D, Hart PS, Ryu OH, Choi SJ, Ozdemir-Karatas M, Firatli E, Piesco N, Hart TC (2005) MMP20 active-site mutation in hypomaturation amelogenesis imperfecta. J Dent Res 84:1031–1035

    PubMed  CAS  Google Scholar 

  • Paine ML, Wang H-J, Luo W, Krebsbach PH, Snead ML (2003) A Transgenic animal model resembling amelogenesis imperfecta related to ameloblastin overexpression. J Biol Chem 278:19447–19452

    Article  PubMed  CAS  Google Scholar 

  • Paine ML, White SN, Luo W, Fong H, Sarikaya M, Snead ML (2001) Regulated gene expression dictates enamel structure and tooth function. Mat Biol 20:273–292

    Article  CAS  Google Scholar 

  • Papagerakis P, MacDougall M, Hotton D, Bailleul-Forestier I, Oboeuf M, Berdal A (2003) Expression of amelogenin in odontoblasts. Bone 32:228–240

    Article  PubMed  CAS  Google Scholar 

  • Platenik J, Kuramoto N, Yoneda Y (2000) Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sci 67:335–364

    Article  PubMed  CAS  Google Scholar 

  • Price JA, Bowden DW, Wright JT, Pettenati MJ, Hart TC (1998) Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. Hum Molec Genet 7:563–569

    Article  PubMed  CAS  Google Scholar 

  • Price JA, Wright JT, Walker SJ, Crawford PJM, Aldred MJ, Hart TC (1999) Tricho-dento-osseous syndrome and amelogenesis imperfecta with taurodontism are genetically distinct conditions. Clin Genet 56:35–40

    Article  PubMed  CAS  Google Scholar 

  • Raiborg C, Rusten TE, Stenmark H (2003) Protein sorting into multivesicular endosomes. Curr Opin Cell Biol 15:446–455

    Article  PubMed  CAS  Google Scholar 

  • Rajpar MH, Harley K, Laing C, Davies RM, Dixon MJ (2001) Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta. Hum Mol Genet 10:1673–1677

    Article  PubMed  CAS  Google Scholar 

  • Schuler GD (1997) Sequence Mapping by Electronic PCR. Genome Res 7:541–550

    PubMed  CAS  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article 3

  • Snead ML, Luo W, Lau EC, Slavkin HC (1988) Spatial- and temporal-restricted pattern for amelogenin gene expression during mouse molar tooth organogenesis. Development 104:77–85

    PubMed  CAS  Google Scholar 

  • Sobel E, Lange K (1996) Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 58:1323–1337

    PubMed  CAS  Google Scholar 

  • Solban N, Jia H-P, Richard S, Tremblay S, Devlin AM, Peng J, Gossard F, Guo D-F, Morel G, Hamet P, Lewanczuk R, Tremblay J (2000) HCaRG, a novel calcium-regulated gene coding for a nuclear protein, is potentially involved in the regulation of cell proliferation. J Biol Chem 275:32234–32243

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos G, Garefalaki ME, Lyroudia K (2005) Genes and related proteins involved in amelogenesis imperfecta. J Dent Res 84:1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Sundell S (1986) Hereditary amelogenesis imperfecta. An epidemiological, genetic and clinical study in a Swedish child population. Swed Dent J Suppl 31:1–38

    PubMed  ADS  CAS  Google Scholar 

  • Witkop CJ (1976) Clinical aspects of dental anomalies. Int Dent J 26:378–390

    PubMed  CAS  Google Scholar 

  • Wright JT, Daly B, Simmons D, Hong S, Hart SP, Hart TC, Atsawasuwan P, Yamauchi M (2006) Human enamel phenotype associated with amelogenesis imperfecta and a kallikrein-4 (g.2142G > A) proteinase mutation. Eur J Oral Sci 114:13–17

    Article  PubMed  CAS  Google Scholar 

  • Wright JT, Hall K, Yamauchi M (1997) The protein composition of normal and developmentally defective enamel. Ciba Found Symp 205:85–99

    PubMed  CAS  Google Scholar 

  • Zhou S, Zawel L, Lengauer C, Kinzler KW, Vogelstein B (1998) Characterization of Human FAST-1, a TGF[beta] and Activin Signal Transducer. Mol Cell 2:121–127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants DE14102 (P.I.P.) and DE06988 (M.L.S.) from the National Institute of Dental and Craniofacial Research. Genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number N01-HG-65403. This investigation was conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number C06 (RR10600-01, CA62528-01, RR14514-01) from the National Center for Research Resources, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragna I. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza, G., Pemberton, T.J., Lee, K. et al. A new locus for autosomal dominant amelogenesis imperfecta on chromosome 8q24.3. Hum Genet 120, 653–662 (2007). https://doi.org/10.1007/s00439-006-0246-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-006-0246-6

Keywords

Navigation