Skip to main content
Log in

Pollen suitability for the development and reproduction of Amblydromalus limonicus (Acari: Phytoseiidae)

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Plant pollen is considered a food of high nutritional quality for several natural enemies, such as predatory insects and mites. In periods of prey absence or scarcity, omnivorous predators often exploit plant pollen as an alternative food. In the case of predators feeding on mixed diets, pollen may be consumed supplementary to the main prey. However, genetic variation may translate into quality differences in pollen derived from distinct plant species. We herein assessed the nutritional suitability of the pollen of four anemophilous plant species [cattail—Typha latifolia (L.), pine, corn, and olive] for the predatory mite Amblydromalus limonicus (Garman & McGregor) (Acari: Phytoseiidae), a phytoseiid mite with great potential for controlling thrips and whiteflies in greenhouse crops. Juvenile development and survival were not affected by the different pollens. Nevertheless, significant differences in adult performance (longevity and egg production) resulted in considerable effects of pollen species on the calculated intrinsic rates of increase (rm) for this predator. Cattail followed by olive pollen resulted in the highest rm values (0.2340 and 0.2001 day−1, respectively), while the lowest values were recorded for corn and pine pollen. Our results show that all pollens tested may be used as alternative food for sustaining the population of A. limonicus in the field. Recorded differences among pollens highlight the need for a careful consideration of the quality of pollen used in laboratory rearings and in field applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26

    Article  Google Scholar 

  • Broufas GD, Koveos DS (2000) Effect of different pollens on development, survivorship and reproduction of Euseius finlandicus (Acari: Phytoseiidae). Environ Entomol 29:743–749

    Article  Google Scholar 

  • Broufas GD, Koveos DS (2001) Cold hardiness characteristics in a strain of the predatory mite Euseius (Amblyseius) finlandicus (Acari: Phytoseiidae) from Northern Greece. Ann Entomol Soc Am 94:82–90

    Article  Google Scholar 

  • Broufas GD, Pappas ML, Koveos DS (2007) Development, survival, and reproduction of the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae) at different constant temperatures. Environ Entomol 36:657–665

    Article  CAS  PubMed  Google Scholar 

  • Coll M, Guershon M (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu Rev Entomol 47:267–297

    Article  CAS  PubMed  Google Scholar 

  • Denno RF, Fagan WF (2003) Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 84:2522–2531

    Article  Google Scholar 

  • Eubanks MD, Styrsky JD (2005) Effects of plant feeding on the performance of omnivorous predators. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, UK, pp 148–177

  • Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) for pest control. Oxford Blackwell Science, Oxford, UK

  • Goleva I, Zebitz CPW (2013) Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Exp Appl Acarol 61:259–283

    Article  CAS  PubMed  Google Scholar 

  • Hoogerbrugge H, van Houten Y, Knapp M, Bolckmans K (2011) Biological control of thrips and whitefly on strawberries with Amblydromalus limonicus and Amblyseius swirskii. IOBC/WPRS Bull 68:65–69

    Google Scholar 

  • Hoy MA (2011) Agricultural acarology: introduction to integrated mite management. CRC Press, Boca Raton, USA

  • Huang N, Enkegaard A, Osborne LS, Ramakers PMJ, Messelink GJ, Pijnakker J, Murphy G (2011) The banker plant method in biological control. Crit Rev Plant Sci 30:259–278

    Article  Google Scholar 

  • Hulshof J, Ketoja E, Vänninen I (2003) Life history characteristics of Frankliniella occidentalis on cucumber leaves with and without supplemental food. Entomol Exp Appl 108:19–32

    Article  Google Scholar 

  • Knapp M, van Houten Y, Hoogerbrugge H, Bolckmans K (2013) Amblydromalus limonicus (Acari: Phytoseiidae) as a biocontrol agent: literature review and new findings. Acarologia 53:191–202

  • Kolokytha PD, Fantinou AA, Papadoulis GT (2011) Effect of several different pollens on the bio-ecological parameters of the predatory mite Typhlodromus athenas Swirski and Ragusa (Acari: Phytoseiidae). Environ Entomol 40:597–604

    Article  CAS  PubMed  Google Scholar 

  • Leman A, Messelink G (2015) Supplemental food that supports both predator and pest: a risk for biological control? Exp Appl Acarol 65:511–524

    Article  CAS  PubMed  Google Scholar 

  • Lorenzon M, Pozzebon A, Duso C (2012) Effects of potential food sources on biological and demographic parameters of the predatory mites Kampimodromus aberrans, Typhlodromus pyri and Amblyseius andersoni. Exp Appl Acarol 58:259–278

    Article  PubMed  Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    Article  CAS  PubMed  Google Scholar 

  • McMurtry JA, de Moraes GJ, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320

    Article  Google Scholar 

  • Messelink GJ, van Steenpaal SEF, Ramakers PMJ (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl 51:753–768

  • Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59:377–393

    Article  Google Scholar 

  • Meyer JS, Ingersoll CG, McDonald LL, Boyce MS (1986) Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology 67:1156–1166

    Article  Google Scholar 

  • Nguyen DT, Vangansbeke D, De Clercq P (2015) Performance of four species of phytoseiid mites on artificial and natural diets. Biol Control 80:56–62

    Article  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27:57–68

    Article  PubMed  Google Scholar 

  • Nomikou M, Janssen A, Sabelis MW (2003) Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Exp Appl Acarol 31:15–26

    Article  PubMed  Google Scholar 

  • Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. Plant Syst Evol 222:187–209

    Article  CAS  Google Scholar 

  • Roulston TH, Cane JH, Buchmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen–pistil interactions, or phylogeny? Ecol Monogr 70:617–643

    Google Scholar 

  • Sabelis MW, van Rijn PCJ, Janssen A (2005) Fitness consequences of food-for-protection strategies in plants. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, UK, pp 109–134

  • Schmidt JM, Peterson JA, Lundgren JG, Harwood JD (2013) Dietary supplementation with pollen enhances survival and Collembola boosts fitness of a web-building spider. Entomol Exp Appl 149:282–291

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) The principles and practice of statistics in biological research, 3rd edn. Freeman, New York, USA

  • Southwood TRE, Henderson PA (2000) Ecological methods, 3rd edn. Blackwell, Oxford, UK

  • SPSS (2011) SPSS. IBM SPSS statistics base 20, ©copyright IBM Corporation

  • Swirski E, Dorzia N (1968) Studies on the feeding, development and oviposition of the predaceous mite Amblyseius limonicus Garman and McGregor (Acarina: Phytoseiidae) on various kinds of food substances. Isr J Agric Res 18:71–75

    Google Scholar 

  • van Houten YM, van Rijn PCJ, Tanigoshi LK, van Stratum P, Bruin J (1995) Preselection of predatory mites to improve year-round biological control of western flower thrips in greenhouse crops. Entomol Exp Appl 74:225–234

    Article  Google Scholar 

  • van Houten YM, Rothe J, Bolckmans KJF (2008) The generalist predator Typhlodromalus limonicus (Acari: Phytoseiidae): a potential biological control agent of thrips and whiteflies. IOBC/WPRS Bull 32:237–240

    Google Scholar 

  • van Rijn PCJ, Tanigoshi LK (1999) Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Exp Appl Acarol 23:785–802

    Article  Google Scholar 

  • van Rijn PCJ, van Houten YM, Sabelis MW (1999) Pollen improves thrips control with predatory mites. IOBC/WPRS Bull 22:209–212

    Google Scholar 

  • van Rijn PCJ, van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83:2664–2679

    Article  Google Scholar 

  • Vangansbeke D, Nguyen DT, Audenaert J, Verhoeven R, Deforce K, Gobin B, Tirry L, De Clercq P (2014a) Diet-dependent cannibalism in the omnivorous phytoseiid mite Amblydromalus limonicus. Biol Control 74:30–35

    Article  Google Scholar 

  • Vangansbeke D, Nguyen DT, Audenaert J, Verhoeven R, Gobin B, Tirry L, De Clercq P (2014b) Performance of the predatory mite Amblydromalus limonicus on factitious foods. BioControl 59:67–77

    Article  Google Scholar 

  • Vangansbeke D, Nguyen DT, Audenaert J, Verhoeven R, Gobin B, Tirry L, De Clercq P (2015) Supplemental food for Amblyseius swirskii in the control of thrips: feeding friend or foe? Pest Manage Sci. doi:10.1002/ps.4000

    Google Scholar 

  • Wäckers FL (2005) Suitability of (extra-) floral nectar, pollen, and honeydew as insect food sources. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, UK, pp 17–74

Download references

Acknowledgments

The editor and two anonymous reviewers are acknowledged for their constructive comments on an earlier version of our manuscript. Vassiliki Mantali, Anneta Triantafyllou and Georgia Tavlaki are thanked for technical assistance during the course of the experiments. K. Samaras and M.L. Pappas were supported by the Onassis Public Benefit Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria L. Pappas.

Additional information

Handling Editor: Patrick De Clercq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaras, K., Pappas, M.L., Fytas, E. et al. Pollen suitability for the development and reproduction of Amblydromalus limonicus (Acari: Phytoseiidae). BioControl 60, 773–782 (2015). https://doi.org/10.1007/s10526-015-9680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-015-9680-5

Keywords

Navigation