Skip to main content
Log in

Pollen nutritional content and digestibility for animals

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

This paper reviews the literature concerning digestion and nutrient content of pollen. Four topics are addressed in detail: 1) The mechanism of pollen digestion by animals; 2) The efficiency of mechanical and digestive removal of pollen content by various animals; 3) Range and taxonomic distribution of pollen nutrients, and 4) Adaptive hypotheses proposed to associate pollen chemistry with pollinator reward. Studies on the mechanism(s) of pollen digestion remain inconclusive, but suggest that differences in digestibility among pollen types may reflect differences in pollen wall porosity, thickness, and composition. Although hummingbirds reportedly digest pollen very poorly, most animals studied, including those that do not regularly consume pollen, can digest 50–100% of ingested grains. Overlooked and recent research of pollen protein content shows that pollen grains may contain over 60% protein, double the amount cited in some studies of pollen-feeding animals. Adaptive hypotheses that associate pollen starch and pollen caloric content with pollinator reward remain unsubstantiated when critically viewed through the lens of phylogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal A., Nair P. K. K. (1989) Free and proteinbound amino acids of pollen ofAcacia auriculaeformis (Mimosaceae). Grana 28: 155–157.

    Google Scholar 

  • Auclair J. L., Jamieson C. A. (1948) Qualitative analysis of amino acids in pollen collected by bees. Science 108: 357–358.

    Google Scholar 

  • Baker H. G., Baker I. (1979) Starch in angiosperm pollen grains and its evolutionary significance. Amer. J. Bot. 66: 591–600.

    Google Scholar 

  • Baker H. G., Baker I. (1983) Some evolutionary and taxonomic implications of variation in the chemical reserves of pollen. In: Mulcahy D. L., Ottaviano E. (eds.) Pollen: Biology and Implications for Plant Breeding. Elsevier, New York, pp. 43–52.

    Google Scholar 

  • Barbier M. (1970) Chemistry and biochemistry of pollens. Progress in Phytochemistry 2: 1–34.

    Google Scholar 

  • Barth F. G. (1985) Insects and flowers: the biology of a partnership. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Bell R. R., Thornber E. J., Seet J. L. L., Groves M. T., Ho N. P., Bell D. T. (1983) Composition and protein quality of honeybee-collected pollen ofEucalyptus marginata andEucalyptus calophylla. J. Nutr. 113: 2479–2484.

    Google Scholar 

  • Blum M. S. (1985) Fundamentals of Insect Physiology. John Wiley, USA.

    Google Scholar 

  • Brice A. T., Dahl K. H., Grau C. R. (1989) Pollen digestibility by hummingbirds and Psittacines. Condor 91: 681–688.

    Google Scholar 

  • Buchmann S. L. (1986) Vibratile pollination inSolanum andLycopersicon: a look at pollen chemistry. In: D'Arcy W. G. (ed.) Solanaceae: Biology and Systematics. Columbia Univ. Press, NY, pp. 237–252.

    Google Scholar 

  • Calvino E. M. (1952) Le sostanze de riserva dei pollini e il loro significato, filogenetico, ecologico, embriologico. Nuovo Giornale Botanico Italiano 59: 1–26.

    Google Scholar 

  • Carisey N., Bauce E. (1997) Impact of balsam fir flowering on pollen and foliage biochemistry in relation to spruce budworm growth, development and food utilization. Entomol. Exp. Appl. 85: 17–31.

    Google Scholar 

  • Cate J. R., Skinner J. L. (1978) Fate and identification of pollen in the alimentary canal of the boll weevil,Anthonomus grandis. Southwest. Entomol. 3: 263–265.

    Google Scholar 

  • Ceausescu S., Mosoiu L. (1981) Identification of free amino acids of some single flower pollens in Romania, collected byApis mellifica carpatica. An. Univ. Bucur. Biol. 30: 101–104.

    Google Scholar 

  • Clark C. J., Lintas C. (1992) Chemical composition of pollen from kiwifruit vines. New Zealand J. Crop. Hort. Sci. 20: 337–344.

    Google Scholar 

  • Colin L. J., Jones C. E. (1980) Pollen energetics and pollination modes. Amer. J. Bot. 67: 210–215.

    Google Scholar 

  • Crailsheim K., Schneider L. H. W., Hrassnigg N., Bühlmann G., Broasch U., Gmeinbauer R., Schöffmann B. (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function. J. Insect. Physiol. 38: 409–419.

    Google Scholar 

  • Crane E. (1977) Dead bees under lime trees. Sugars poisonous to bees. Bee World 58: 129–130.

    Google Scholar 

  • Crane E. (1978) Sugars poisonous to bees. Bee World 59: 37–38.

    Google Scholar 

  • Crowson R. A. (1981) The Biology of the Coleoptera. Academic Press, London.

    Google Scholar 

  • Cruz-Landim C. (1985) Photographic examination of pollen digestion in the intestine of worker honeybees [Portuguese]. Natural 10: 27–36.

    Google Scholar 

  • Cruz-Landim C., Serrao J. E. (1994) The evolutive significance of pollen use as protein resource by Trigonini bees (Hymenoptera, Apidae, Meliponinae). J. Adv. Zool. 15: 1–5.

    Google Scholar 

  • Danforth B. N. (1990) Provisioning behavior and the estimation of investment ratios in a solitary bee,Calliopsis (Hypomacrotera)persimilis (Cockerell) (Hymenoptera: Andrenidae). Behav. Ecol. Sociobiol. 27: 159–168.

    Google Scholar 

  • Detzel A., Wink M. (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecol. 4: 8–18.

    Google Scholar 

  • Dobson H. E. M. (1987) Role of flower and pollen aromas in host-plant recognition by solitary bees. Oecologia 72: 618–623.

    Google Scholar 

  • Dobson H. E. M. (1988) Survey of pollen and pollenkitt lipids — chemical cues to flower visitors? Amer. J. Bot. 75: 170–182.

    Google Scholar 

  • Dobson H. E. M. (1994) Floral volatiles in insect biology. In: Bernays E. A. (ed.) Insect-Plant Interactions, vol 5. CRC Press, Boca Raton, FL, pp. 47–81.

    Google Scholar 

  • Dobson H. E. M., Peng Y. S. (1997) Digestion of pollen components by larvae of the flowerspecialist beeChelostoma florisomne (Hymenoptera: Megachilidae). J. Insect. Physiol. 43: 89–100.

    Google Scholar 

  • Downes J. A. (1955) The food habits and description ofAtrichopogon pollinivorus sp.n. (Diptera: Ceratopogonidae). Transactions of the Royal Entomological Society of London 106: 439–453.

    Google Scholar 

  • Erhardt A., Baker I. (1990) Pollen amino acids — an additional diet for a nectar feeding butterfly? Plant Syst. Evol. 169: 111–121.

    Google Scholar 

  • Evans D. E., Taylor P. E., Singh M. B., Knox R. B. (1991) Quantitative analysis of lipids and protein from the pollen ofBrassica napus L. Plant Science 73: 117–126.

    Google Scholar 

  • Franchi G. G., Bellani L., Nepi M., Pacini E. (1996) Types of carbohydrate reserves in pollen: localization, systematic distribution and ecophysiological significance. Flora 191: 143–159.

    Google Scholar 

  • Franchi G. G., Franchi G., Corti P., Pompella A. (1997) Microspectrophotometric evaluation of digestibility of pollen grains. Plant Food Hum. Nutr. 50: 115–126.

    Google Scholar 

  • Gherardini G. L., Healey P. L. (1969) Dissolution of outer wall of pollen grain during pollination. Nature 224: 718–719.

    Google Scholar 

  • Gilbert L. E. (1972) Pollen feeding and reproductive biology ofHeliconius butterflies. Proc. Natl. Acad. Sci. (USA) 69: 1403–1407.

    Google Scholar 

  • Gilliam M., McCaughey W. F., Wintermute B. (1980) Amino acids in pollens and nectars of citrus cultivars and in stored pollen and honey from honeybee colonies in citrus groves. J. Apicul. Res. 19: 64–72.

    Google Scholar 

  • Grant B. R. (1996) Pollen digestion by Darwin's finches and its importance for early breeding. Ecology 77: 489–499.

    Google Scholar 

  • Grayum M. H. (1985) Evolutionary and ecological significance of starch storage in pollen of the Araceae. Amer. J. Bot. 72: 1565–1577.

    Google Scholar 

  • Greenberg L. (1982) Year-round culturing and productivity of a sweat bee,Lasioglossum zephyrum (Hymenoptera: Halictidae). J. Kans. Entomol. Soc. 55: 13–22.

    Google Scholar 

  • Grinfel'd E. K. (1959) The feeding of thrips (Thysanoptera) on pollen of flowers and the origin of asymmetry in their mouthparts [Russian]. Entomol. Obozr. 38: 798–804.

    Google Scholar 

  • Grinfel'd E. K. (1975) Anthophily in beetles (Coleoptera) and a critical evaluation of the cantharophilous hypothesis. Entomol. Rev. 54: 18–22.

    Google Scholar 

  • De Groot A. P. (1953) Protein and amino acid requirements of the honey bee. Physiol. Comp. Oecol. 3: 1–90.

    Google Scholar 

  • Haslett J. R. (1983) A photographic account of pollen digestion by adult hoverflies. Physiol. Entomol. 8: 167–171.

    Google Scholar 

  • Herbert E. W. J. (1992) Honey bee nutrition. In: Graham J. M. (ed.) The Hive and the Honey Bee. Dadant & Sons, Hamilton, IL, pp. 197–233.

    Google Scholar 

  • Herbert E., Bickley W., Shimanuki H. (1970) The brood-rearing capability of caged honey bees fed dandelion and mixed pollen diets. J. Econ. Entomol. 63: 215–218.

    Google Scholar 

  • Herrera L. G., Martínez del Rio C. (1998) Pollen digestion by New World bats: effects of processing time and feeding habits. Ecology 79: 2828–2838.

    Google Scholar 

  • Hesse M. (1979a) Development and ultrastructure of the exine and sticky substance of the pollen in closely related entomophilous and anemophilous angiosperms: Polygonaceae [German]. Flora 168: 558–577.

    Google Scholar 

  • Hesse M. (1979b) Development and ultrastructure of the exine and the sticky substance of the pollen in closely related entomophilous and anemophilous angiosperms: Salicaceae, Tiliaceae and Ericaceae [German]. Flora 168: 540–557.

    Google Scholar 

  • Hesse M. (1979c) Ultrastructure and distribution of pollenkitt in insect- and wind-pollinated Acer. [German]. Plant Syst. Evol. 131: 277–289.

    Google Scholar 

  • Hitchcock J. D. (1959) Poisoning of honey bees by death camas blossoms. Am. Bee J. 99: 418–419.

    Google Scholar 

  • Howell D. J. (1974) Bats and pollen: physiological aspects of the syndrome of chiropterophily. Comp. Biochem. Physiol. 48A: 263–276.

    Google Scholar 

  • Hügel M. F. (1962) Étude de quelques constituents du pollen. Ann. Abeille 5: 97–133.

    Google Scholar 

  • Ibrahim S. H. (1974) Composition of pollen gathered by honeybees from some major sources. Agricultural Research Review, Cairo 52: 121–124.

    Google Scholar 

  • Johri B. M., Vasil I. K. (1961) Physiology of pollen. Bot. Rev. 27: 325–381.

    Google Scholar 

  • King L. M., Schaal B. A. (1990) Genotype variation within asexual lineages ofTaraxacum officinale. Proc. Natl. Acad. Sci. (USA) 87: 998–1002.

    Google Scholar 

  • Kirk W. D. J. (1984) Pollen-feeding in thrips (Insecta: Thysanoptera). J. Zool. 204: 107–117.

    Google Scholar 

  • Klungness L. M., Peng Y.-S. (1983) A scanning electron microscopic study of pollen loads collected and stored by honeybees. J. Apicul. Res. 22: 264–271.

    Google Scholar 

  • Klungness L. M., Peng Y.-S. (1984) A histochemical study of pollen digestion in the alimentary canal of honeybees (Apis mellifera L.). J. Insect. Physiol. 30: 511–521.

    Google Scholar 

  • Knight A. H., Crooke W. M., Shepherd H. (1972) Chemical composition of pollen with particular reference to cation exchange capacity and uronic acid content. J. Sci. Food Agri. 23: 263–274.

    Google Scholar 

  • Knox D. A., Shimanuki H., Herbert J. T. Jr. (1971) Diet and longevity of adult honey bees. J. Econ. Entomol. 64: 1415–1416.

    Google Scholar 

  • Kress W. J., Stone D. E., Sellers S. C. (1978) Ultrastructure of exine-less pollen:Heliconia (Heliconiaceae). Amer. J. Bot. 65: 1064–1076.

    Google Scholar 

  • Kroon G. H., van Praagh J. P., Veltuis H. H. W. (1974) Osmotic shock as a prerequisite to pollen digestion in the alimentary tract of the worker honeybee. J. Apicul. Res. 13: 177–181.

    Google Scholar 

  • Kwiatkowski A., Lubliner-Mianowska K. (1957) Investigation on the chemical composition of pollen. II. The study of the pollen membranes [Polish]. Acta Soc. Bot. Pol. 26: 501–514.

    Google Scholar 

  • Law B. S. (1992a) The maintenance nitrogen requirements of the Queensland blossom bat (Syconycteris australis) on a sugar pollen diet — is nitrogen a limiting resource? Physiol. Zool. 65: 634–648.

    Google Scholar 

  • Law B. S. (1992b) Physiological factors affecting pollen use by Queensland blossom bats (Syconycteris australis). Funct. Ecol. 6: 257–64?.

    Google Scholar 

  • Lee S. (1978) A factor analysis study of the functional significance of angiosperm pollen. Syst. Bot. 3: 1–19.

    Google Scholar 

  • Levin M. D., Haydak M. H. (1957) Comparative value of different pollens in the nutrition ofOsmia lignaria. Bee World 38: 221–226.

    Google Scholar 

  • Lidforss B. (1899) Weitere Beiträge zur Biologie des Pollens. Jahrb. f. Wiss. Bot. 33: 232–312.

    Google Scholar 

  • Linskens H. F., Mulleneers J. M. L. (1967) Formation of “Instant Pollen Tubes”. Acta Bot. Neerland. 16: 132–142.

    Google Scholar 

  • Linskens H. F., Schrauwen J. (1969) The release of free amino acids from germinating pollen. Acta Bot. Neerland. 18: 605–614.

    Google Scholar 

  • Loper G. M., Berdel R. L. (1980) The effects of nine pollen diets on broodrearing of honeybees. Apidolog. 11: 351–359.

    Google Scholar 

  • Loper G. M., Cohen A. C. (1982) The caloric content of bee-gathered pollen. Am. Bee J. 122: 709–710.

    Google Scholar 

  • Loper G. M., Cohen A. C. (1987) Amino acid content of dandelion pollen, a honey bee (Hymenoptera: Apidae) nutritional evaluation. J. Econ. Entomol. 80: 14–17.

    Google Scholar 

  • Lundén R. (1956) Literature on pollen chemistry. Grana Palynologica 1: 3–19.

    Google Scholar 

  • Mann J. S., Crowson R. A. (1981) The systematic position ofOrsodacne Latr. andSyneta Lac. (Coleoptera: Chrysomelidae), in relation to characters of larvae, internal anatomy and tarsal vestiture. J. Nat. Hist. 15: 727–749.

    Google Scholar 

  • McCaughey W. F., Gilliam M., Standifer L. N. (1980) Amino acids and protein adequacy for honey bees of pollens from desert plants and other floral sources. Apidolog. 11: 75–86.

    Google Scholar 

  • McLellan A. R. (1977) Minerals, carbohydrates and amino acids of pollens from some woody and herbaceous plants. Ann. Bot. 41: 1225–1232.

    Google Scholar 

  • Meeuse B. J. D. (1961) The Story of Pollination. Ronald Press, New York.

    Google Scholar 

  • De Meillon B., Wirth W. W. (1989) A new pollen feedingAtrichopogon midge from Madagascar, with notes on closely related subsaharan species (Diptera: Ceratopogonidae). Revue Francaise D'Entomologie 11: 85–89.

    Google Scholar 

  • Milton K., Dintzis F. R. (1981) Nitrogen-to-protein conversion factors for tropical plant samples. Biotropica 13: 177–181.

    Google Scholar 

  • Moldenke A. R. (1976) California pollination ecology and vegetation types. Phytol. 34: 305–361.

    Google Scholar 

  • Neff J. L., Simpson B. B. (1997) Nesting and foraging behavior ofAndrena (Callandrena)Rudbeckiae Robertson (Hymenoptera: Apoidea: Andrenidae) in Texas. J. Kans. Entomol. Soc. 70: 100–113.

    Google Scholar 

  • Nepi M., Pacini E., Pinzauti M. (1997) Preliminary studies on pollen digestibility byOsmia cornuta Latr. (Hymenoptera: Megachilidae). In: Richards K. W. (ed.) Proceedings of the 7th International Symposium on Pollination, Lethbridge, Alberta, Canada, 23–28 June 1996. International Society for Horticultural Science, Leiden, The Netherlands, 435–439.

    Google Scholar 

  • Nicolson S. W. (1994) Pollen feeding in the eucalypt nectar fly,Drosophila flavohirta. Physiol. Entomol. 19: 58–60.

    Google Scholar 

  • Nielsen N., Grömmer J., Lundén R. (1955) Investigations on the chemical composition of pollen from some plants. Acta Chemica Scandinavica 9: 1100–1106.

    Google Scholar 

  • O'Neal R. J., Waller G. W. (1984) On the pollen harvest by the honey bee (Apis mellifera L.) near Tucson, Arizona (1976–1981). Desert Plants 6: 81–109.

    Google Scholar 

  • Pacini E. (1997) Tapetum character states: analytical keys for tapetum types and activities. Can. J. Bot. 75: 1448–1459.

    Google Scholar 

  • Parker R. L. (1926) The collection and utilization of pollen by the honeybee. Agric. Exp. Sta. Cornell Univ. Mem. 98.

  • Paton D. C. (1981) The significance of pollen in the diet of the New Holland Honeyeater,Phylidonyris novaehollandiae (Aves: Meliphagidae). Aust. J. Zool. 29: 217–224.

    Google Scholar 

  • Peng Y. S., Nasr M. E., Marston J. M., Yuenzhen F. (1985) The digestion of dandelion pollen by adult worker honeybees. Physiol. Entomol. 10: 75–82.

    Google Scholar 

  • Peng Y. S., Nasr M. E., Marston J. M. (1986) Release of alfalfa,Medicago sativa, pollen cytoplasm in the gut of the honey bee,Apis mellifera (Hymenoptera: Apidae). Ann. Entomol. Soc. Amer. 79: 804–807.

    Google Scholar 

  • Petanidou T., Vokou D. (1990) Pollination and pollen energetics in Mediterranean ecosystems. Amer. J. Bot. 77: 986–992.

    Google Scholar 

  • Quin D., Goldingay R., Churchill S., Engel D. (1996) Feeding behaviour and food availability of the yellow-bellied glider in North Queensland. Wildlife Research 23: 637–646.

    Google Scholar 

  • Rabie A. L., Wells J. D., Dent L. K. (1983) The nitrogen content of pollen protein. J. Apicul. Res. 22: 119–123.

    Google Scholar 

  • Rayner C. J., Langridge D. F. (1985) Amino acids in bee-collected pollens from Australian indigenous and exotic plants. Aus. J. Exper. Agric. 25: 722–726.

    Google Scholar 

  • Regali A., Rasmont P. (1995) New bioassays to evaluate diet in orphan colonies ofBombus terrestris [French]. Apidolog. 26: 273–281.

    Google Scholar 

  • Rhoades D. F., Bergdahl J. C. (1981) Adaptive significance of toxic nectar. Am. Nat. 117: 798–803.

    Google Scholar 

  • Richardson K. C., Wooller R. D., Collins B. G. (1986) Adaptations to a diet of nectar and pollen in the marsupialTarsipes rostratus (Marsupialia: Tarsipedidae). J. Zool. Lond. 208: 285–297.

    Google Scholar 

  • Rickson F. R., Cresti M., Beach J. H. (1990) Plant cells which aid in pollen digestion within a beetle's gut. Oecologia 82: 424–426.

    Google Scholar 

  • Rink G., Carroll E. R., Kung F. H. (1989) Estimation ofJuglans nigra mating system parameters. Forest Science 35: 623–627.

    Google Scholar 

  • Roulston T. H., Buchmann S. L. (2000) A phylogenetic reconsideration of the pollen starchpollination correlation. Evolutionary Ecology Research (in press).

  • Roulston T. H., Cane J. H., Buchmann S. L. (2000) What governs the protein content of pollen grains: pollinator preferences, pollenpistil interactions, or phylogeny. Ecol. Monog. (in press).

  • Samuelson G. A. (1994) Pollen consumption and digestion by leaf beetles. In: Jolivet P. H., Cox M. L. (eds.) Novel aspects of the biology of Chrysomelidae. Kluwer Academic Publishers, The Netherlands, pp. 179–183.

    Google Scholar 

  • Schmidt J. O., Buchmann S. L. (1985) Pollen digestion and nitrogen utilization byApis mellifera L. (Hymenoptera: Apidae). Comp. Biochem. Physiol. 82A: 499–503.

    Google Scholar 

  • Schmidt J. O., Johnson B. E. (1984) Pollen feeding preference ofApis mellifera, a polylectic bee. Southwest. Natural. 9: 41–47.

    Google Scholar 

  • Schmidt J. O., Thoenes S. C., Levin M. D. (1987) Survival of honey bees,Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Amer. 80: 176–183.

    Google Scholar 

  • Schmidt P. J., Schmidt J. O., Weber C. W. (1984) Mesquite pollen as a dietary protein source for mice. Nutrition Reports International 30: 513–522.

    Google Scholar 

  • Scott H. J., Stojanovich C. T. (1963) Digestion of juniper pollen by Collembola. Fla. Entomol. 46: 189–191.

    Google Scholar 

  • Scott R. W., Strohl M. J. (1962) Extraction and identification of lipids from loblolly pine pollen. Phytochem. 1: 189–193.

    Google Scholar 

  • Serrao J. E., Cruz-Landim C. (1996) Microscopic observations of the digestion condition of pollen grains in the midgut of stingless bee larvae. J. Hym. Res. 5: 259–263.

    Google Scholar 

  • Shah C. V. (1997) Are pollen rewards independent of pollination modes? M.A. Dissertation, California State University, Fullerton.

    Google Scholar 

  • Simpson B. B., Neff J. L. (1983) Evolution and diversity of floral rewards. In: Jones C. E., Little R. J. (eds.) Handbook of Experimental Pollination Biology. Scientific and Academic Editions, Van Nostrand Reinhold Company, New York, NY, pp. 142–159.

    Google Scholar 

  • Smith A. P., Green S. W. (1987) Nitrogen requirements of the sugar glider (Petaurus breviceps), an omnivorous marsupial, on a honey-pollen diet. Physiol. Zool. 60: 82–92.

    Google Scholar 

  • Snodgrass R. E. (1925) Anatomy and physiology of the honey bee. McGraw-Hill, New York.

    Google Scholar 

  • Solberg Y., Remedios G. (1980) Chemical composition of pure and bee-collected pollen. Meldinger fra Norges Landbrukshoegskole. 59(18): 2–12.

    Google Scholar 

  • Standifer L. N. (1966) Some lipid constituents of pollens collected by honeybees. J. Apicul. Res. 5: 93–98.

    Google Scholar 

  • Standifer L. N. (1967) A comparison of the protein quality of pollens for growth-stimulation of the hypopharyngeal glands and longevity of honey bees,Apis mellifera L. (Hymenoptera: Apidae). Insectes Soc. 14: 415–426.

    Google Scholar 

  • Standifer L. N., McCaughey W. F., Dixon S. E., Gilliam M., Loper M. (1980) Biochemistry and microbiology of pollen collected by honey bees (Apis mellifera L.) from almond,Prunus dulcis. II Protein, amino acids and enzymes. Apidolog. 11: 163–171.

    Google Scholar 

  • Stanley R. G., Linskens H. F. (1965) Protein diffusion from germinating pollen. Physiol. Plant. 18: 47–53.

    Google Scholar 

  • Stanley R. G., Linskens H. F. (1974) Pollen: Biology, biochemistry, management. 1st edn. Springer, Heidelberg, Germany.

    Google Scholar 

  • Suárez-Cervera M., Marquez J., Bosch J., Seoane-Camba J. (1994) An ultrastructural study of pollen grains consumed by larvae ofOsmia bees (Hymenoptera, Megachilidae). Grana 33: 191–204.

    Google Scholar 

  • Svoboda J. A., Thompson M. J., Herbert E. W. Jr., Shimanuki H. (1980) Sterol utilization in honey bees fed a synthetic diet: analysis of prepupal sterols. J. Insect. Physiol. 26: 291–294.

    Google Scholar 

  • Svoboda J. A., Thompson M. J., Herbert E. W. Jr., Shortino T. J., Szczepanik-Vanleeuwen P. A. (1982) Utilisation and metabolism of dietary sterols in the honey bee and yellow fever mosquito. Lipids 17: 220–225.

    Google Scholar 

  • Svoboda J. A., Herbert E. W. Jr., Thompson M. J. (1987) Effects of steroid metabolism inhibitors and ecdysteroid analogs on honey bee sterol metabolism and development. Arch. Insect Biochem. Physiol. 6: 1–8.

    Google Scholar 

  • Tepedino V. J. (1981) Notes on the reproductive biology ofZigadenus paniculatus, a toxic range plant. Great Basin Natur. 41: 427–430.

    Google Scholar 

  • Tepedino V. J., Knapp A. K., Eickwort G. C., Ferguson D. C. (1989) Death camasZigadenus nuttallii in Kansas: pollen collectors and a florivore. J. Kans. Entomol. Soc. 62: 411–412.

    Google Scholar 

  • Thien L. B., Bernhardt P., Gibbs G. W., Pellmyr O., Bergström G., Groth I., McPherson G. (1985) The pollination ofZygogynum (Winteraceae) by a moth,Sabatinca (Micropterigidae): an ancient association? Science 227: 540–543.

    Google Scholar 

  • Todd F. E., Bretherick O. (1942) The composition of pollens. J. Econ. Entomol. 35: 312–317.

    Google Scholar 

  • Turner V. (1984)Banksia pollen as a source of protein in the diet of two Australian marsupialsCercartetus nanus andTarsipes rostratus. Oikos 43: 53–61.

    Google Scholar 

  • Van Der Moezel P. G., Delfs J. C., Pate J. S., Loneragan W. A., Bell D. T. (1987) Pollen selection by honeybees in shrublands of the Northern Sandplains of Western Australia. J. Apicul. Res. 26: 224–232.

    Google Scholar 

  • Vansell G. H. (1933) A plant poisonous to adult bees. J. Econ. Entomol. 26: 168–170.

    Google Scholar 

  • Vansell G. H. (1934) Adult bees found dying on spotted loco. J. Econ. Entomol. 27: 635–637.

    Google Scholar 

  • Van Tets I. G. (1997) Extraction of nutrients fromprotea pollen by African rodents. Belgian Journal of Zoology 127: 59–65.

    Google Scholar 

  • Vivino E. A., Palmer L. S. (1944) The chemical composition and nutritional value of pollens collected by bees. Arch. Biochem. Biophys. 4: 129–136.

    Google Scholar 

  • Waldorf E. (1981) The utilization of pollen by a natural population ofEntomobrya socia. Rev. Ecol. Biol. Sol. 18: 397–402.

    Google Scholar 

  • Wcislo W. T., Cane J. H. (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Ann. Rev. Entomol. 41: 195–224.

    Google Scholar 

  • Whitcomb W., Wilson H. F. (1929) Mechanics of digestion of pollen by the adult honey bee and the relation of undigested parts to dysentary of bees. Agric. Exp. Sta. Univ. Wisconsin, Madison, Res. Bull. 92.

  • Wightman J. A., Rogers V. M. (1978) Growth, energy and nitrogen budgets and efficiencies of the growing larvae ofMegachile pacifica (Hymenoptera: Megachilidae). Oecologia 36: 245–257.

    Google Scholar 

  • Winston M. L. (1987) The biology of the honey bee. Harvard Univ. Press, Cambridge, MA.

    Google Scholar 

  • Wooller R. D., Richardson K. C., Pagendham C. M. (1988) The digestion of pollen by some Australian birds. Aust. J. Zool. 36: 357–362.

    Google Scholar 

  • Wu F. S., Murry L. E. (1985) Changes in protein and amino acid content during anther development in fertile and cytoplasmic sterilePetunia. Theor. Appl. Genet. 71: 68–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roulston, T.H., Cane, J.H. Pollen nutritional content and digestibility for animals. Pl Syst Evol 222, 187–209 (2000). https://doi.org/10.1007/BF00984102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984102

Key words

Navigation