Skip to main content
Log in

ATP-dependent chromatin remodelers in ageing and age-related disorders

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Ageing is characterized by the perturbation in cellular homeostasis associated with genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intracellular communication. Changes in the epigenome represent one of the crucial mechanisms during ageing and in age-related disorders. The ATP-dependent chromatin remodelers are an evolutionarily conserved family of nucleosome remodelling factors and generally regulate DNA repair, replication, recombination, transcription and cell cycle. Here, we review the chromatin based epigenetic changes that occur in ageing and age-related disorders with a specific reference to chromatin remodelers. We also discuss the link between dietary restriction and chromatin remodelers in regulating age-related processes with a view for consideration in future intervention studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alessio N, Squillaro T, Cipollaro M, Bagella L, Giordano A, Galderisi U (2010) The BRG1 ATPase of chromatin remodeling complexes is involved in modulation of mesenchymal stem cell senescence through RB-P53 pathways. Oncogene 29:5452–5463

    Article  CAS  PubMed  Google Scholar 

  • Alfert A, Moreno N, Kerl K (2019) The BAF complex in development and disease. Epigenet Chromatin 12:19. https://doi.org/10.1186/s13072-019-0264-y

    Article  Google Scholar 

  • Balasubramanian P, Howell PR, Anderson RM (2017) Aging and caloric restriction research: a biological perspective with translational potential. EBioMedicine 21:37–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C et al (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 3:e2264. https://doi.org/10.1371/journal.pone.0002264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes V, Bhat L, Unnikrishnan A, Heydari AR, Arking R, Pile LA (2014) SIN3 is critical for stress resistance and modulates adult lifespan. Aging 6:645–660

    Article  PubMed  PubMed Central  Google Scholar 

  • Borghesan M, Hoogaars WMH, Varela-Eirin M, Talma N, Demaria M (2020) A senescence-centric view of aging: implications for longevity and disease. Trends Cell Biol S0962–8924:30143–30144. https://doi.org/10.1016/j.tcb.2020.07.002

    Article  CAS  Google Scholar 

  • Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834

    Article  CAS  PubMed  Google Scholar 

  • Byrd AK, Raney KD (2012) Superfamily 2 helicases. Front Biosci (Landmark Ed) 17:2070–2088

    Article  CAS  Google Scholar 

  • Chai J, Charboneau AL, Betz BL, Weissman BE (2005) Loss of the hSNF5 gene concomitantly inactivates p21CIP/WAF1 and p16INK4a activity associated with replicative senescence in A204 rhabdoid tumor cells. Cancer Res 65:10192–10198

    Article  CAS  PubMed  Google Scholar 

  • Chandler RL, Brennan J, Schisler JC, Serber D, Patterson C, Magnuson T (2013) ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol Cell Biol 33:265–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee N, Sinha D, Lemma-Dechassa M, Tan S, Shogren-Knacck MA, Bartholmew B (2011) Histone H3 tail acetylation modulates ATP-dependent remodelling through multiple mechanisms. Nucleic Acids Res 39:8378–8391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT (2000) Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287:1804–1808

    Article  CAS  PubMed  Google Scholar 

  • Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H, Stepczynska A, Wang C, Buer J, Lee HW, von Zglinicki T, Ganser A et al (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39:99–105

    Article  CAS  PubMed  Google Scholar 

  • Curran SP, Wu X, Riedel CG, Ruvkun G (2009) A soma-to-germline transformation in long-lived Caenorhabditis elegans mutants. Nature 459:1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang W, Sutphin GL, Dorsey JA, Otte GL, Cao K, Perry RM, Wanat JJ, Saviolaki D, Murakami CJ, Tsuchiyama S et al (2014) Inactivation of yeast Isw2 chromatin remodeling enzyme mimics longevity effect of calorie restriction via induction of genotoxic stress response. Cell Metab 19:952–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisen JA, Sweder KS, Hanawalt PC (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23:2715–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fielenbach N, Antebi A (2008) C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 22:2149–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774

    Article  CAS  PubMed  Google Scholar 

  • Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschi C, Garagnani P, Morsiani C, Conte M et al (2018) The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne) 5:61

    Article  Google Scholar 

  • Gao Y, Tan J, Jin JY, Ma HQ, Chen XK, Leger B, Xu JQ, Spagnol ST, Dahl KN, Levine AS et al (2018) SIRT6 facilitates directional telomere movement upon oxidative damage. Sci Rep 8:5407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garay E, Campos SE, Gonzalez de la Cruz J, Gaspar AP, Jinich A, Deluna A (2014) High-resolution profling of stationary-phase survival reveals yeast longevity factors and their genetic interactions. PLoS Genet 10:e1004168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gensous N, Franceschi C, Santoro A, Milazzo M, Garagnani P, Bacalini MG (2019) The impact of caloric restriction on the epigenetic signatures of aging. Int J Mol Sci 20(8):2022

    Article  CAS  PubMed Central  Google Scholar 

  • Grabowska W, Sikora E, Bielak-Zmijewska A (2017) Sirtuins, a promising target in slowing down the ageing process. Biogerontology 18:447–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerville F, De Souto Barreto P, Ader I, Andrieu S, Casteilla L, Dray C, Fazilleau N, Guyonnet S, Lnagin D, Liblau R, Parini A, Valet P, Vergnolle N, Rolland Y, Vellas B (2020) Revisiting the hallmarks of aging to identify markers of biological age. J Prev Alzheimer Dis 7:56–64. https://doi.org/10.14283/jpad.2019.50

    Article  CAS  Google Scholar 

  • Hadem IKH, Majaw T, Kharbuli B, Sharma R (2019) Beneficial effects of dietary restriction in aging brain. J Chem Neuroanat 95:123–133

    Article  CAS  PubMed  Google Scholar 

  • Hadem IKH, Majaw T, Sharma R (2020) Interplay between nutrient sensing molecules during aging and longevity. In: Rath PC (ed) Models, molecules and mechanisms in biogerontology: cellular processes, metabolism and diseases. Springer, Singapore, pp 393–417

    Chapter  Google Scholar 

  • Haigis MC, Yankner BA (2010) The aging stress response. Mol Cell 40:333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  • He L, Chen Y, Feng J, Sun W, Li S, Ou M, Tang L (2017) Cellular senescence regulated by SWI/SNF complex subunits through p53/p21 and the p16/pRB pathway. Int J Biochem Cell Biol 90:29–37

    Article  CAS  PubMed  Google Scholar 

  • Hodges C, Kirkland JG, Crabtree GR (2016) The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb Perspect Med 6(2016):a026930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Innocente SA, Abrahamson JLA, Cogswell JP, Lee JM (1999) p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci USA 96:2147–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue C, Zhao C, Tsuduki Y, Udono M, Wang L et al (2017) SMARCD1 regulates senescence-associated lipid accumulation in hepatocytes. NPJ Aging Mech Dis 3:11. https://doi.org/10.1038/s41514-017-0011-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493:338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalache A, deHoogh AI, Howlett SE, Kennedy B, Eggersdorfer M, Marsman DS, Shao A, Griffiths JC (2019) Nutrition interventions for healthy ageing across the lifespan: a conference report. Eur J Nutr 58:S1–S11

    Article  Google Scholar 

  • Kapahi P, Kaeberlein M, Hansen M (2017) Dietary restriction and lifespan: lessons from invertebrate models. Ageing Res Rev 39:3–14

    Article  PubMed  Google Scholar 

  • Kato M, de Lencastre A, Pincus Z, Slack FJ (2009) Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 10:R54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katz S, Calasanti T (2015) Critical perspectives on successful aging: Does it “appeal more than it illuminates”? Gerontologist 55:26–33

    Article  PubMed  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  • Kleger A, Mahaddalkar P, Katz SF, Lechel A, Ju JY, Loya K et al (2012) Increased reprogramming capacity of mouse liver progenitor cells, compared with differentiated liver cells, requires the BAF complex. Gastroenterology 142:907–917

    Article  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Lai WF, Lin M, Wong WT (2019) Tackling aging by using miRNA as a target and a tool. Trends Mol Med 25:673–684

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Dai F, Zhuang L, Xiao ZD, Kim J et al (2016) BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21. Oncotarget 7:19134–19146

    Article  PubMed  PubMed Central  Google Scholar 

  • Lezhava T (2001) Chromosome and aging: genetic conception of aging. Biogerontology 2:253–260

    Article  CAS  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  CAS  PubMed  Google Scholar 

  • Li N, Kong M, Zeng S, Hao C, Li M, Li L, Xu Z, Zhu M, Xu Y (2019) Brahma related gene 1 (Brg1) contributes to liver regeneration by epigenetically activating the Wnt/β-catenin pathway in mice. Faseb J 33:327–338. https://doi.org/10.1096/fj.201800197R

    Article  PubMed  Google Scholar 

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of ageing. Cell 153(6):1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macieira-Coelho A, Puvion-Dutilleul F (1989) Evaluation of the reorganization in the high-order structure of DNA occurring during cell senescence. Mutat Res 219:165–170

    Article  CAS  PubMed  Google Scholar 

  • Mahendra G, Kanungo MS (2000) Age-related and steroid induced changes in the histones of the quail liver. Arch Gerontol Geriatr 30:109–114

    Article  CAS  PubMed  Google Scholar 

  • Masoro EJ (2007) Role of hormesis in life extension by caloric restriction. Dose Response 5:163–173

    Article  Google Scholar 

  • Matilainen O, Sleiman MSB, Quiros PM, Garcia S, Auwerx J (2017) The chromatin remodeling factor ISW-1 integrates organismal responses against nuclear and mitochondrial stress. Nat Commun 8:1818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCord RP, Nazario-Toole A, Zhang H, Chines PS et al (2013) Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res 23:260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick MA, Delaney JR, Tsuchiya M, Tsuchiyama S, Shemorry A, Sim S, Chou AC, Ahmed U, Carr D, Murakami CJ et al (2015) A comprehensive analysis of replicative lifespan in 4,698 single-gene deletion strains uncovers conserved mechanisms of aging. Cell Metab 22:895–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHugh D, Gil J (2018) Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol 217(1):65–77. https://doi.org/10.1083/jcb.201708092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthel S, Uyar B, He M, Krause A, Vitrinel B, Bulut S et al (2019) The conserved histone chaperone LIN-53 is required for normal lifespan and maintenance of muscle integrity in Caenorhabditis elegans. Aging Cell 18(6):e13012. https://doi.org/10.1111/acel.13012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napolitano MA, Cipollaro M, Cascino A, Melone MA, Giordano A, Galderisi U (2007) Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells. J Cell Sci 120:2904–2911

    Article  CAS  PubMed  Google Scholar 

  • Patne K, Rakesh R, Arya V, Chanana UB, Sethy R, Swer PB, Muthuswami R (2017) BRG1and SMARCAL1 transcriptionally co-regulate DROSHA, DGCR8 and DICER in response to doxorubicin-induced DNA damage. Biochim Biophys Acta 1860:936–951

    Article  CAS  Google Scholar 

  • Pavlopoulos E, Jones S, Kosmidis S, Close M, Kim C, Kovalerchik O, Small SA, Kandel ER (2013) Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48. Sci Transl Med 5:200. https://doi.org/10.1126/scitranslmed.3006373

    Article  CAS  Google Scholar 

  • Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T (2009) Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 11:1261–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson CL (2000) ATP-dependent chromatin remodeling: going mobile. FEBS Lett 476:68–72

    Article  CAS  PubMed  Google Scholar 

  • Pibiri M (2018) Liver regeneration in aged mice: new insights. Aging (Albany NY) 10:1801–1824

    Article  CAS  Google Scholar 

  • Pitt JN, Kaeberlein M (2015) Why is aging conserved and what can we do about it? PLoS Biol 13(4):e1002131. https://doi.org/10.1371/journal.pbio.1002131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polymenis M, Kennedy BK (2017) Unbalanced growth, senescence and aging. Adv Exp Med Biol 1002:189–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puvion-Dutilleul F, Macieira-Coelho A (1982) Ultrastructural organization of nucleoproteins during aging of cultured human embryonic fibroblasts. Exp Cell Res 138:423–429

    Article  CAS  PubMed  Google Scholar 

  • Puvion-Dutilleul F, Macieira-Coelho A (1983) Aging dependent nucleolar and chromatin changes in cultivated fibroblasts. Cell Biol Int Rep 7:61–71

    Article  CAS  PubMed  Google Scholar 

  • Rahmanto YS, Jung JG, Wu RC, Kobayashi Y, Heaphy CM, Meeker AK, Wang TL, Shih IM (2016) Inactivating ARID1A tumor suppressor enhances TERT transcription and maintains telomere length in cancer cells. J Biol Chem 291:9690–9699

    Article  CAS  PubMed Central  Google Scholar 

  • Rattan SIS (2008) Hormesis and ageing. Ageing Res Rev 7:63–78

    Article  PubMed  Google Scholar 

  • Rattan SIS (2012) Cell senescence in vitro. Wiley, New York. https://doi.org/10.1002/9780470015902.a0002567.pub3

    Book  Google Scholar 

  • Rath PC, Kanungo MS (1989) Methylation of repetitive DNA sequences in the brain during aging of the rat. FEBS Lett 244:193–198

    Article  CAS  PubMed  Google Scholar 

  • Reisman D, Glaros S, Thompson EA (2009) The SWI/SNF complex and cancer. Oncogene 28:1653–1668

    Article  CAS  PubMed  Google Scholar 

  • Riedel CG, Dowen RH, Lourenco GF, Kirienko NV et al (2013) DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat Cell Biol 15:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Rodero S, Fernández-Morera JL, Menéndez-Torre E et al (2011) Aging genetics and aging. Aging Dis 2:186–195

    PubMed  PubMed Central  Google Scholar 

  • Roninson IB (2002) Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 179:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ros M, Carrascosa JM (2020) Current nutritional and pharmacological anti-aging interventions. Biochim Biophys Acta Mol Basis Dis 1866:165612. https://doi.org/10.1016/j.bbadis.2019.165612

    Article  CAS  PubMed  Google Scholar 

  • Ruijtenberg S, van den Heuvel S (2016) Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle 15:196–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R (2004) Dietary restriction and its multifaceted effects. Curr Sci 87:1203–1210

    Google Scholar 

  • Sharma R (2017) Dietary restriction, an intervention for healthy aging. In: Rath PC, Sharma R, Prasad S (eds) Topics in biomedical gerontology. Springer, Singapore, pp 327–333

    Chapter  Google Scholar 

  • Sharma R, Nakamura A, Takahashi R, Nakamoto H, Goto S (2006) Carbonyl modification in rat liver histones: decrease with age and increase by dietary restriction. Free Radical Biol Med 40:1179–1184

    Article  CAS  Google Scholar 

  • Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T, Goldman RD (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci USA 103:8703–8708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha S, Verma S, Chaturvedi MM (2016) Differential expression of SWI/SNF chromatin remodeler subunits Brahma and Brahma-Related gene during drug-induced liver injury and regeneration in mouse model. DNA Cell Biol 35:373–384

    Article  CAS  PubMed  Google Scholar 

  • Singhal N, Graumann J, Wu G, Araúzo Bravo MJ, Han DW, Greber B, Gentile L, Mann M, Scholer HR (2010) Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 141:943–955

    Article  CAS  PubMed  Google Scholar 

  • Smetana K Jr, Lacina L, Szabo P, Dvorankova B, Broz P, Sedo A (2016) Ageing as an important risk factor for cancer. Anticancer Res 36:5009–5017

    Article  CAS  PubMed  Google Scholar 

  • Squillaro T, Severino V, Alessio N, Farina A et al (2015) De-regulated expression of the BRG1 chromatin remodeling factor in bone marrow mesenchymal stromal cells induces senescence associated with the silencing of NANOG and changes in the levels of chromatin proteins. Cell Cycle 14:1315–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Chuang JC, Kanchwala M, Wu L et al (2016) Suppression of the SWI/SNF component ARID1a promotes mammalian regeneration. Cell Stem Cell 18:456–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Chen WD, Wang YD (2017) DAF-16/FOXO transcription factor in aging and longevity. Front Pharmacol 8:548. https://doi.org/10.3389/fphar.2017.00548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swygert SG, Peterson CL (2014) Chromatin dynamics: interplay between remodeling enzymes and histone modifications. Biochim Biophys Acta Gene Regul Mech 1839:728–736

    Article  CAS  Google Scholar 

  • Tesch-Romer C, Wahl HW (2017) Toward a more comprehensive concept of successful aging: disability and care needs. J Gerontol Ser B Psychol Sci Soc Sci 72:310–318

    Google Scholar 

  • Toiber D, Erdel F, Bouazoune K, Silberman DM et al (2013) SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell 51:454–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujii A, Miyamoto Y, Moriyama T, Tsuchiya Y, Obuse C, Mizuguchi K, Oka M, Yoneda Y (2015) Retinoblastoma-binding protein 4-regulated classical nuclear transport is involved in cellular senescence. J Biol Chem 290:29375–29388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeij WP, Dolle ME, Reiling E, Jaarsma D, Payan C et al (2016) Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature 537:427–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Fu Y, Hu F, Lan J, Xu F, Yang X, Luo X, Wang J, Hu J (2017) Loss of BRG1 induces CRC cell senescence by regulating p53/p21 pathway. Cell Death Dis 8:e2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RR, Pan R, Zhang W, Fu J, Lin JD, Meng Z-X (2018) The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control. Protein Cell 9:207–215

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Kaufmann B, Engleitner T, Lu M, Mogler C, Olsavszky V, Öllinger R, Zhong S, Geraud C, Cheng Z, Rad RR, Schmid RM, Friess H, Hüser N, Hartmann D, von Figura G (2019) Brg1 promotes liver regeneration after partial hepatectomy via regulation of cell cycle. Sci Rep 9:2320

    Article  PubMed  PubMed Central  Google Scholar 

  • Willets RC, Gallop AP, Leandro PA, Lu JLC, Macdonald AS, Miller KA et al (2004) Longevity in the 21st century. Br Actuar J 10:685–832

    Article  Google Scholar 

  • Wolffe AP, Hayes JJ (1999) Chromatin disruption and modification. Nucleic Acids Res 27:711–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Ge YL, Huang LQ, Liu HY, Xue Y, Zhao Y (2014) BRG1, the ATPase subunit of SWI/SNF chromatin remodeling complex, interacts with HDAC2 to modulate telomerase expression in human cancer cells. Cell Cycle 13:2869–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zecic A, Braeckman BP (2020) DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cell 9:109

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang W, Dong M (2018) The miR-58 microRNA family is regulated by insulin signaling and contributes to lifespan regulation in Caenorhabditis elegans. Sci China Life Sci 61:1060–1070. https://doi.org/10.1007/s11427-018-9308-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank the Department of Biochemistry, NEHU and the UGC-DRSIII programme for laboratory facilities. PBS deeply acknowledges funding from the University Grants Commission (UGC) under the D S Kothari Postdoctoral Fellowship (DSKPF) scheme (File No. F.4-2/2006 (BSR)/BL/18-19/0273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swer, P.B., Sharma, R. ATP-dependent chromatin remodelers in ageing and age-related disorders. Biogerontology 22, 1–17 (2021). https://doi.org/10.1007/s10522-020-09899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-020-09899-3

Keywords

Navigation