Skip to main content

Unbalanced Growth, Senescence and Aging

  • Chapter
  • First Online:
Cell Division Machinery and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1002))

Abstract

Usually, cells balance their growth with their division. Coordinating growth inputs with cell division ensures the proper timing of division when sufficient cell material is available and affects the overall rate of cell proliferation. At a very fundamental level, cellular replicative lifespan—defined as the number of times a cell can divide, is a manifestation of cell cycle control. Hence, control of mitotic cell divisions, especially when the commitment is made to a new round of cell division, is intimately linked to replicative aging of cells. In this chapter, we review our current understanding, and its shortcomings, of how unbalanced growth and division, can dramatically influence the proliferative potential of cells, often leading to cellular and organismal aging phenotypes. The interplay between growth and division also underpins cellular senescence (i.e., inability to divide) and quiescence, when cells exit the cell cycle but still retain their ability to divide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnston GC, Pringle JR, Hartwell LH (1977) Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 105(1):79–98

    Article  CAS  PubMed  Google Scholar 

  2. Pringle JR, Hartwell LH (1981) The Saccharomyces cerevisiae cell cycle. In: The molecular and cellular biology of the yeast saccharomyces, vol 1. Cold Spring Harbor Laboratory Press, New York, pp 97–142

    Google Scholar 

  3. Turner JJ, Ewald JC, Skotheim JM (2012) Cell size control in yeast. Curr Biol 22(9):R350–R359. doi:10.1016/j.cub.2012.02.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14(23):R1014–R1027. doi:10.1016/j.cub.2004.11.027

    Article  CAS  PubMed  Google Scholar 

  5. Ginzberg MB, Kafri R, Kirschner M (2015) Cell biology. On being the right (cell) size. Science 348(6236):1245075. doi:10.1126/science.1245075

  6. Blagosklonny MV, Pardee AB (2002) The restriction point of the cell cycle. Cell Cycle 1(2):103–110

    Article  CAS  PubMed  Google Scholar 

  7. Carter BL, Jagadish MN (1978) Control of cell division in the yeast Saccharomyces cerevisiae cultured at different growth rates. Exp Cell Res 112(2):373–383

    Article  CAS  PubMed  Google Scholar 

  8. Jagadish MN, Carter BL (1977) Genetic control of cell division in yeast cultured at different growth rates. Nature 269(5624):145–147

    Article  CAS  PubMed  Google Scholar 

  9. Jagadish M, Carter B (1978) Effects of temperature and nutritional conditions on the mitotic cell cycle of Saccharomyces cerevisiae. J Cell Sci 31(1):71–78

    CAS  PubMed  Google Scholar 

  10. Johnston GC, Singer RA, McFarlane S (1977) Growth and cell division during nitrogen starvation of the yeast Saccharomyces cerevisiae. J Bacteriol 132(2):723–730

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143(3):1384–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hartwell LH, Unger MW (1977) Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J Cell Biol 75(2 Pt 1):422–435

    Article  CAS  PubMed  Google Scholar 

  13. Messier V, Zenklusen D, Michnick SW (2013) A nutrient-responsive pathway that determines M phase timing through control of B-cyclin mRNA stability. Cell 153(5):1080–1093

    Article  CAS  PubMed  Google Scholar 

  14. Wood E, Nurse P (2015) Sizing up to divide: mitotic cell-size control in fission yeast. Annu Rev Cell Dev Biol 31:11–29. doi:10.1146/annurev-cellbio-100814-125601

    Article  CAS  PubMed  Google Scholar 

  15. Blagosklonny MV (2012) Answering the ultimate question “what is the proximal cause of aging?”. Aging 4(12):861–877

    Article  PubMed  PubMed Central  Google Scholar 

  16. Blagosklonny MV (2014) Geroconversion: irreversible step to cellular senescence. Cell Cycle 13(23):3628–3635. doi:10.4161/15384101.2014.985507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmoller KM, Skotheim JM (2015) The biosynthetic basis of cell size control. Trends Cell Biol 25(12):793–802. doi:10.1016/j.tcb.2015.10.006

    Article  PubMed  Google Scholar 

  18. Johnson A, Skotheim JM (2013) Start and the restriction point. Curr Opin Cell Biol. doi:10.1016/j.ceb.2013.07.010

    PubMed  PubMed Central  Google Scholar 

  19. Son S, Tzur A, Weng Y, Jorgensen P, Kim J, Kirschner MW, Manalis SR (2012) Direct observation of mammalian cell growth and size regulation. Nat Methods 9(9):910–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Son S, Kang JH, Oh S, Kirschner MW, Mitchison TJ, Manalis S (2015) Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis. J Cell Biol 211(4):757–763. doi:10.1083/jcb.201505058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Godin M, Delgado FF, Son S, Grover WH, Bryan AK, Tzur A, Jorgensen P, Payer K, Grossman AD, Kirschner MW (2010) Using buoyant mass to measure the growth of single cells. Nat Methods 7(5):387–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Milo R (2013) What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays 35(12):1050–1055. doi:10.1002/bies.201300066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lange HC, Heijnen JJ (2001) Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol Bioeng 75(3):334–344

    Article  CAS  PubMed  Google Scholar 

  24. Liebermeister W, Noor E, Flamholz A, Davidi D, Bernhardt J, Milo R (2014) Visual account of protein investment in cellular functions. Proc Natl Acad Sci U S A 111(23):8488–8493. doi:10.1073/pnas.1314810111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24(11):437–440

    Article  CAS  PubMed  Google Scholar 

  26. Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14(3):313–318

    Article  CAS  PubMed  Google Scholar 

  27. Venema J, Tollervey D (1999) Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 33(1):261–311

    Article  CAS  PubMed  Google Scholar 

  28. Wapinski I, Pfiffner J, French C, Socha A, Thompson DA, Regev A (2010) Gene duplication and the evolution of ribosomal protein gene regulation in yeast. Proc Natl Acad Sci 107(12):5505–5510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Planta RJ, Mager WH (1998) The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast 14(5):471–477. doi:10.1002/(sici)1097-0061(19980330)14:5<471::aid-yea241>3.0.co;2-u

    Article  CAS  PubMed  Google Scholar 

  30. Wade CH, Umbarger MA, McAlear MA (2006) The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes. Yeast 23(4):293–306. doi:10.1002/yea.1353

    Article  CAS  PubMed  Google Scholar 

  31. Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297(5580):395–400. doi:10.1126/science.1070850

    Article  CAS  PubMed  Google Scholar 

  32. Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE, Hieter P, Vogelstein B, Kinzler KW (1997) Characterization of the yeast transcriptome. Cell 88(2):243–251

    Article  CAS  PubMed  Google Scholar 

  33. Bakshi S, Siryaporn A, Goulian M, Weisshaar JC (2012) Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 85(1):21–38. doi:10.1111/j.1365-2958.2012.08081.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mitchison JM (1971) Cell growth and protein synthesis. In: The biology of the cell cycle. Cambridge University Press, New York, p 129

    Google Scholar 

  35. Brenner C, Nakayama N, Goebl M, Tanaka K, Toh-e A, Matsumoto K (1988) CDC33 encodes mRNA cap-binding protein eIF-4E of Saccharomyces cerevisiae. Mol Cell Biol 8(8):3556–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hanic-Joyce PJ, Johnston GC, Singer RA (1987) Regulated arrest of cell proliferation mediated by yeast prt1 mutations. Exp Cell Res 172(1):134–145

    Article  CAS  PubMed  Google Scholar 

  37. Bedard DP, Johnston GC, Singer RA (1981) New mutations in the yeast Saccharomyces cerevisiae affecting completion of “start”. Curr Genet 4(3):205–214. doi:10.1007/BF00420500

    Article  CAS  PubMed  Google Scholar 

  38. Unger MW, Hartwell LH (1976) Control of cell division in Saccharomyces cerevisiae by methionyl-tRNA. Proc Natl Acad Sci U S A 73(5):1664–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu L, Pena Castillo L, Mnaimneh S, Hughes TR, Brown GW (2006) A survey of essential gene function in the yeast cell division cycle. Mol Biol Cell 17(11):4736–4747. doi:10.1091/mbc.E06-04-0368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Polymenis M, Aramayo R (2015) Translate to divide: сontrol of the cell cycle by protein synthesis. Microbial Cell 2(4):94–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wicker LS, Boltz RC, Matt V, Nichols EA, Peterson LB, Sigal NH (1990) Suppression of B cell activation by cyclosporin a, FK506 and rapamycin. Eur J Immunol 20(10):2277–2283

    Article  CAS  PubMed  Google Scholar 

  42. Zoncu R, Efeyan A, Sabatini DM (2010) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253(5022):905–909

    Article  CAS  PubMed  Google Scholar 

  44. Loewith R, Hall MN (2011) Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189(4):1177–1201. doi:10.1534/genetics.111.133363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345(6275):544–547. doi:10.1038/345544a0

    Article  CAS  PubMed  Google Scholar 

  46. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ, Wang S, Ren P, Martin M, Jessen K, Feldman ME, Weissman JS, Shokat KM, Rommel C, Ruggero D (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485(7396):55–61. doi:10.1038/nature10912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Popolo L, Vanoni M, Alberghina L (1982) Control of the yeast cell cycle by protein synthesis. Exp Cell Res 142(1):69–78

    Article  CAS  PubMed  Google Scholar 

  48. Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M (2004) A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18(20):2491–2505. doi:10.1101/gad.1228804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moore SA (1988) Kinetic evidence for a critical rate of protein synthesis in the Saccharomyces cerevisiae yeast cell cycle. J Biol Chem 263(20):9674–9681

    CAS  PubMed  Google Scholar 

  50. Rossow PW, Riddle VG, Pardee AB (1979) Synthesis of labile, serum-dependent protein in early G1 controls animal cell growth. Proc Natl Acad Sci U S A 76(9):4446–4450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brooks R (1977) Continuous protein synthesis is required to maintain the probability of entry into S phase. Cell 12(1):311–317

    Article  CAS  PubMed  Google Scholar 

  52. Lippman SI, Broach JR (2009) Protein kinase a and TORC1 activate genes for ribosomal biogenesis by inactivating repressors encoded by Dot6 and its homolog Tod6. Proc Natl Acad Sci 106(47):19928–19933. doi:10.1073/pnas.0907027106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192(1):73–105. doi:10.1534/genetics.111.135731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Longo VD, Shadel GS, Kaeberlein M, Kennedy B (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16(1):18–31. doi:10.1016/j.cmet.2012.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bilinski T, Zadrag-Tecza R, Bartosz G (2012) Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast. FEMS Yeast Res 12(1):97–101. doi:10.1111/j.1567-1364.2011.00759.x

    Article  CAS  PubMed  Google Scholar 

  56. Zadrag R, Kwolek-Mirek M, Bartosz G, Bilinski T (2006) Relationship between the replicative age and cell volume in Saccharomyces cerevisiae. Acta Biochim Pol 53(4):747–751

    CAS  PubMed  Google Scholar 

  57. He C, Tsuchiyama SK, Nguyen QT, Plyusnina EN, Terrill SR, Sahibzada S, Patel B, Faulkner AR, Shaposhnikov MV, Tian R, Tsuchiya M, Kaeberlein M, Moskalev AA, Kennedy BK, Polymenis M (2014) Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet 10(12):e1004860. doi:10.1371/journal.pgen.1004860

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310(5751):1193–1196. doi:10.1126/science.1115535

    Article  CAS  PubMed  Google Scholar 

  59. Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2):174–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620

    Article  CAS  PubMed  Google Scholar 

  61. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395. doi:10.1038/nature08221

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen C, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2(98):ra75. doi:10.1126/scisignal.2000559

  64. Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, Lonetto MA, Maecker HT, Kovarik J, Carson S, Glass DJ, Klickstein LB (2014) mTOR inhibition improves immune function in the elderly. Sci Transl Med 6(268):268ra179. doi:10.1126/scitranslmed.3009892

  65. Passtoors WM, Beekman M, Deelen J, van der Breggen R, Maier AB, Guigas B, Derhovanessian E, van Heemst D, de Craen AJ, Gunn DA, Pawelec G, Slagboom PE (2013) Gene expression analysis of mTOR pathway: association with human longevity. Aging Cell 12(1):24–31. doi:10.1111/acel.12015

    Article  CAS  PubMed  Google Scholar 

  66. Kennedy BK, Lamming DW (2016) The mechanistic target of rapamycin: the grand conductor of metabolism and aging. Cell Metab 23(6):990–1003. doi:10.1016/j.cmet.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  67. Steffen KK, Dillin A (2016) A ribosomal perspective on proteostasis and aging. Cell Metab 23(6):1004–1012. doi:10.1016/j.cmet.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  68. Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK, Kaeberlein M (2008) Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133(2):292–302. doi:10.1016/j.cell.2008.02.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450

    Article  CAS  PubMed  Google Scholar 

  70. Foiani M, Cigan AM, Paddon CJ, Harashima S, Hinnebusch AG (1991) GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae. Mol Cell Biol 11(6):3203–3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cherkasova VA, Hinnebusch AG (2003) Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev 17(7):859–872. doi:10.1101/gad.1069003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kubota H, Obata T, Ota K, Sasaki T, Ito T (2003) Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2. J Biol Chem 278(23):20457–20460

    Article  CAS  PubMed  Google Scholar 

  73. Valenzuela L, Aranda C, Gonzalez A (2001) TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation. J Bacteriol 183(7):2331–2334. doi:10.1128/JB.183.7.2331-2334.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Martin-Marcos P, Hinnebusch AG, Tamame M (2007) Ribosomal protein L33 is required for ribosome biogenesis, subunit joining and repression of GCN4 translation. Mol Cell Biol. 27(17):5968–5985

    Google Scholar 

  75. Li W, Li X, Miller RA (2014) ATF4 activity: a common feature shared by many kinds of slow-aging mice. Aging Cell 13(6):1012–1018. doi:10.1111/acel.12264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li W, Miller RA (2014) Elevated ATF4 function in fibroblasts and liver of slow-aging mutant mice. J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glu040

    Google Scholar 

  77. Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M (2015) Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11(6):867–880. doi:10.1080/15548627.2015.1034410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Alvers AL, Wood MS, Hu D, Kaywell AC, Dunn WA Jr, Aris JP (2009) Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5(6):847–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M, Vellai T (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4(3):330–338

    Article  CAS  PubMed  Google Scholar 

  80. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4(2):e24. doi:10.1371/journal.pgen.0040024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11(1):35–46. doi:10.1016/j.cmet.2009.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, Jung S, Jung YK (2013) Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 4:2300. doi:10.1038/ncomms3300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4(2):176–184

    Article  CAS  PubMed  Google Scholar 

  84. Bai H, Kang P, Hernandez AM, Tatar M (2013) Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLoS Genet 9(11):e1003941. doi:10.1371/journal.pgen.1003941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ulgherait M, Rana A, Rera M, Graniel J, Walker DW (2014) AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep 8(6):1767–1780. doi:10.1016/j.celrep.2014.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    Article  CAS  PubMed  Google Scholar 

  87. Longo VD (1999) Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies, and mammalian neuronal cells. Neurobiol Aging 20(5):479–486

    Article  CAS  PubMed  Google Scholar 

  88. Fabrizio P, Liou LL, Moy VN, Diaspro A, SelverstoneValentine J, Gralla EB, Longo VD (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163(1):35–46

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Enns LC, Ladiges W (2010) Protein kinase A signaling as an anti-aging target. Ageing Res Rev 9(3):269–272. doi:10.1016/j.arr.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  90. Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418(6895):344–348

    Article  CAS  PubMed  Google Scholar 

  91. Gendron CM, Minois N, Longo VD, Pletcher SD, Vaupel JW (2003) Biodemographic trajectories of age-specific reproliferation from stationary phase in the yeast Saccharomyces cerevisiae seem multiphasic. Mech Ageing Dev 124:1059–1063

    Article  PubMed  Google Scholar 

  92. Enns LC, Morton JF, Mangalindan RS, McKnight GS, Schwartz MW, Kaeberlein MR, Kennedy BK, Rabinovitch PS, Ladiges WC (2009) Attenuation of age-related metabolic dysfunction in mice with a targeted disruption of the Cbeta subunit of protein kinase a. J Gerontol A Biol Sci Med Sci 64(12):1221–1231. doi:10.1093/gerona/glp133

    Article  PubMed  CAS  Google Scholar 

  93. Enns LC, Morton JF, Treuting PR, Emond MJ, Wolf NS, McKnight GS, Rabinovitch PS, Ladiges WC (2009) Disruption of protein kinase a in mice enhances healthy aging. PLoS One 4(6):e5963. doi:10.1371/journal.pone.0005963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yan L, Vatner DE, O’Connor JP, Ivessa A, Ge H, Chen W, Hirotani S, Ishikawa Y, Sadoshima J, Vatner SF (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130(2):247–258. doi:10.1016/j.cell.2007.05.038

    Article  CAS  PubMed  Google Scholar 

  95. Vatner SF, Park M, Yan L, Lee GJ, Lai L, Iwatsubo K, Ishikawa Y, Pessin J, Vatner DE (2013) Adenylyl cyclase type 5 in cardiac disease, metabolism, and aging. Am J Phys Heart Circ Phys 305(1):H1–H8. doi:10.1152/ajpheart.00080.2013

    CAS  Google Scholar 

  96. Higuchi-Sanabria R, Pernice WM, Vevea JD, Alessi Wolken DM, Boldogh IR, Pon LA (2014) Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae. FEMS Yeast Res 14(8):1133–1146. doi:10.1111/1567-1364.12216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kwan EX, Foss EJ, Tsuchiyama S, Alvino GM, Kruglyak L, Kaeberlein M, Raghuraman MK, Brewer BJ, Kennedy BK, Bedalov A (2013) A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan. PLoS Genet 9(3):e1003329. doi:10.1371/journal.pgen.1003329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles--a cause of aging in yeast. Cell 91(7):1033–1042

    Article  CAS  PubMed  Google Scholar 

  99. Shcheprova Z, Baldi S, Frei SB, Gonnet G, Barral Y (2008) A mechanism for asymmetric segregation of age during yeast budding. Nature 454(7205):728–734. doi:10.1038/nature07212

    CAS  PubMed  Google Scholar 

  100. Khmelinskii A, Keller PJ, Lorenz H, Schiebel E, Knop M (2010) Segregation of yeast nuclear pores. Nature 466(7305):E1. doi:10.1038/nature09255

    Article  CAS  PubMed  Google Scholar 

  101. Kennedy BK, McCormick MA (2011) Asymmetric segregation: the shape of things to come? Curr Biol 21(4):R149–R151. doi:10.1016/j.cub.2011.01.018

    Article  CAS  PubMed  Google Scholar 

  102. Khmelinskii A, Meurer M, Knop M, Schiebel E (2011) Artificial tethering to nuclear pores promotes partitioning of extrachromosomal DNA during yeast asymmetric cell division. Curr Biol 21(1):R17–R18. doi:10.1016/j.cub.2010.11.034

    Article  CAS  PubMed  Google Scholar 

  103. Gehlen LR, Nagai S, Shimada K, Meister P, Taddei A, Gasser SM (2011) Nuclear geometry and rapid mitosis ensure asymmetric episome segregation in yeast. Curr Biol 21(1):25–33. doi:10.1016/j.cub.2010.12.016

    Article  CAS  PubMed  Google Scholar 

  104. Erjavec N, Nystrom T (2007) Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104(26):10877–10881. doi:10.1073/pnas.0701634104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McFaline-Figueroa JR, Vevea J, Swayne TC, Zhou C, Liu C, Leung G, Boldogh IR, Pon LA (2011) Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell 10(5):885–895. doi:10.1111/j.1474-9726.2011.00731.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang J, McCormick MA, Zheng J, Xie Z, Tsuchiya M, Tsuchiyama S, El-Samad H, Ouyang Q, Kaeberlein M, Kennedy BK, Li H (2015) Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry. Proc Natl Acad Sci U S A 112(38):11977–11982. doi:10.1073/pnas.1506054112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen C, Fingerhut JM, Yamashita YM (2016) The ins(ide) and outs(ide) of asymmetric stem cell division. Curr Opin Cell Biol 43:1–6. doi:10.1016/j.ceb.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  108. Raff M (2006) The mystery of intracellular developmental programmes and timers. Biochem Soc Trans 34(Pt 5):663–670. doi:10.1042/BST0340663

    Article  CAS  PubMed  Google Scholar 

  109. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15(6):122

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pavletich NP (1999) Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 287(5):821–828. doi:10.1006/jmbi.1999.2640

    Article  CAS  PubMed  Google Scholar 

  111. Fisher RP (2010) Coming full circle: cyclin-dependent kinases as anti-cancer drug targets. Subcell Biochem 50:1–15. doi:10.1007/978-90-481-3471-7_1

    Article  CAS  PubMed  Google Scholar 

  112. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 14(2):130–146. doi:10.1038/nrd4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chandler H, Peters G (2013) Stressing the cell cycle in senescence and aging. Curr Opin Cell Biol 25(6):765–771. doi:10.1016/j.ceb.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  114. Menjo M, Ikeda K, Nakanishi M (1998) Regulation of G1 cyclin-dependent kinases in liver regeneration. J Gastroenterol Hepatol 13(Suppl):S100–S105

    CAS  PubMed  Google Scholar 

  115. Tamamori-Adachi M, Takagi H, Hashimoto K, Goto K, Hidaka T, Koshimizu U, Yamada K, Goto I, Maejima Y, Isobe M, Nakayama KI, Inomata N, Kitajima S (2008) Cardiomyocyte proliferation and protection against post-myocardial infarction heart failure by cyclin D1 and Skp2 ubiquitin ligase. Cardiovasc Res 80(2):181–190. doi:10.1093/cvr/cvn183

    Article  CAS  PubMed  Google Scholar 

  116. Han IS, Seo TB, Kim KH, Yoon JH, Yoon SJ, Namgung U (2007) Cdc2-mediated Schwann cell migration during peripheral nerve regeneration. J Cell Sci 120(Pt 2):246–255. doi:10.1242/jcs.03322

    Article  CAS  PubMed  Google Scholar 

  117. Bedelbaeva K, Snyder A, Gourevitch D, Clark L, Zhang XM, Leferovich J, Cheverud JM, Lieberman P, Heber-Katz E (2010) Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci U S A 107(13):5845–5850. doi:10.1073/pnas.1000830107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Connell-Crowley L, Elledge SJ, Harper JW (1998) G1 cyclin-dependent kinases are sufficient to initiate DNA synthesis in quiescent human fibroblasts. Curr Biol 8:65–68

    Article  CAS  PubMed  Google Scholar 

  119. Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo VD (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, tor, and Sch9. PLoS Genet 4(1):e13. doi:10.1371/journal.pgen.0040013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. McKnight JN, Boerma JW, Breeden LL, Tsukiyama T (2015) Global promoter targeting of a conserved lysine deacetylase for transcriptional shutoff during quiescence entry. Mol Cell 59(5):732–743. doi:10.1016/j.molcel.2015.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. McCormick MA, Delaney JR, Tsuchiya M, Tsuchiyama S, Shemorry A, Sim S, Chou AC, Ahmed U, Carr D, Murakami CJ, Schleit J, Sutphin GL, Wasko BM, Bennett CF, Wang AM, Olsen B, Beyer RP, Bammler TK, Prunkard D, Johnson SC, Pennypacker JK, An E, Anies A, Castanza AS, Choi E, Dang N, Enerio S, Fletcher M, Fox L, Goswami S, Higgins SA, Holmberg MA, Hu D, Hui J, Jelic M, Jeong KS, Johnston E, Kerr EO, Kim J, Kim D, Kirkland K, Klum S, Kotireddy S, Liao E, Lim M, Lin MS, Lo WC, Lockshon D, Miller HA, Moller RM, Muller B, Oakes J, Pak DN, Peng ZJ, Pham KM, Pollard TG, Pradeep P, Pruett D, Rai D, Robison B, Rodriguez AA, Ros B, Sage M, Singh MK, Smith ED, Snead K, Solanky A, Spector BL, Steffen KK, Tchao BN, Ting MK, Vander Wende H, Wang D, Welton KL, Westman EA, Brem RB, Liu XG, Suh Y, Zhou Z, Kaeberlein M, Kennedy BK (2015) A comprehensive analysis of replicative lifespan in 4,698 single-gene deletion strains uncovers conserved mechanisms of aging. Cell Metab. doi:10.1016/j.cmet.2015.09.008

  122. Burtner CR, Murakami CJ, Olsen B, Kennedy BK, Kaeberlein M (2011) A genomic analysis of chronological longevity factors in budding yeast. Cell Cycle 10(9):1385–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ashrafi K, Sinclair D, Gordon JI, Guarente L (1999) Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96(16):9100–9105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Piper PW, Harris NL, MacLean M (2006) Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mech Ageing Dev 127(9):733–740. doi:10.1016/j.mad.2006.05.004

    Article  PubMed  Google Scholar 

  125. Polymenis M, Kennedy BK (2012) Chronological and replicative lifespan in yeast: do they meet in the middle? Cell Cycle 11(19):3531–3532. doi:10.4161/cc.22041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Delaney JR, Murakami C, Chou A, Carr D, Schleit J, Sutphin GL, An EH, Castanza AS, Fletcher M, Goswami S, Higgins S, Holmberg M, Hui J, Jelic M, Jeong KS, Kim JR, Klum S, Liao E, Lin MS, Lo W, Miller H, Moller R, Peng ZJ, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Schuster A, Singh M, Spector BL, Wende HV, Wang AM, Wasko BM, Olsen B, Kaeberlein M (2013) Dietary restriction and mitochondrial function link replicative and chronological aging in Saccharomyces cerevisiae. Exp Gerontol 48(10):1006–1013. doi:10.1016/j.exger.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  127. Murakami C, Delaney JR, Chou A, Carr D, Schleit J, Sutphin GL, An EH, Castanza AS, Fletcher M, Goswami S, Higgins S, Holmberg M, Hui J, Jelic M, Jeong KS, Kim JR, Klum S, Liao E, Lin MS, Lo W, Miller H, Moller R, Peng ZJ, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Schuster A, Singh M, Spector BL, Vander Wende H, Wang AM, Wasko BM, Olsen B, Kaeberlein M (2012) pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell Cycle 11(16):3087–3096. doi:10.4161/cc.21465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15(7):397–408. doi:10.1038/nrc3960

    Article  CAS  PubMed  Google Scholar 

  129. Pardee AB (1989) G1 events and regulation of cell proliferation. Science 246(4930):603–608

    Article  CAS  PubMed  Google Scholar 

  130. Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9(10):1149–1163

    Article  CAS  PubMed  Google Scholar 

  131. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705. doi:10.1146/annurev-physiol-030212-183653

    Article  CAS  PubMed  Google Scholar 

  132. Mao Z, Ke Z, Gorbunova V, Seluanov A (2012) Replicatively senescent cells are arrested in G1 and G2 phases. Aging 4(6):431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Baus F, Gire V, Fisher D, Piette J, Dulic V (2003) Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J 22(15):3992–4002. doi:10.1093/emboj/cdg387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gire V, Dulic V (2015) Senescence from G2 arrest, revisited. Cell Cycle 14(3):297–304. doi:10.1080/15384101.2014.1000134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sherwood SW, Rush D, Ellsworth JL, Schimke RT (1988) Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc Natl Acad Sci U S A 85(23):9086–9090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556. doi:10.1083/jcb.201009094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Blagosklonny MV (2012) Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging 4(3):159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  139. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–2868. doi:10.1371/journal.pbio.0060301

    Article  CAS  PubMed  Google Scholar 

  140. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133(6):1019–1031. doi:10.1016/j.cell.2008.03.039

    Article  CAS  PubMed  Google Scholar 

  141. Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, Javors M, Desprez PY, Benz CC, Kapahi P, Nelson PS, Campisi J (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17(8):1049–1061. doi:10.1038/ncb3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bitto A, Ito TK, Pineda VV, LeTexier NJ, Huang HZ, Sutlief E, Tung H, Vizzini N, Chen B, Smith K, Meza D, Yajima M, Beyer RP, Kerr KF, Davis DJ, Gillespie CH, Snyder JM, Treuting PM, Kaeberlein M (2016) Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice Elife 5. doi:10.7554/eLife.16351

  143. Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Science Signal 2(98):ra75. doi:10.1126/scisignal.2000559

  144. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236. doi:10.1038/nature10600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530(7589):184–189. doi:10.1038/nature16932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kapanidou M, Lee S, Bolanos-Garcia VM (2015) BubR1 kinase: protection against aneuploidy and premature aging. Trends Mol Med 21(6):364–372. doi:10.1016/j.molmed.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  147. Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P, van Deursen JM (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36(7):744–749. doi:10.1038/ng1382

    Article  CAS  PubMed  Google Scholar 

  148. Matsumoto T, Baker DJ, d'Uscio LV, Mozammel G, Katusic ZS, van Deursen JM (2007) Aging-associated vascular phenotype in mutant mice with low levels of BubR1. Stroke 38(3):1050–1056. doi:10.1161/01.str.0000257967.86132.01

    Article  CAS  PubMed  Google Scholar 

  149. Baker DJ, Dawlaty MM, Wijshake T, Jeganathan KB, Malureanu L, van Ree JH, Crespo-Diaz R, Reyes S, Seaburg L, Shapiro V, Behfar A, Terzic A, van de Sluis B, van Deursen JM (2013) Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat Cell Biol 15(1):96–102. doi:10.1038/ncb2643

    Article  CAS  PubMed  Google Scholar 

  150. Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T, Thalji NM, Hagler M, Jurk D, Smith LA, Casaclang-Verzosa G, Zhu Y, Schafer MJ, Tchkonia T, Kirkland JL, Miller JD (2016) Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell doi:10.1111/acel.12458

  151. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15(3):428–435. doi:10.1111/acel.12445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O’Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14(4):644–658. doi:10.1111/acel.12344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22(1):78–83. doi:10.1038/nm.4010

    Article  CAS  PubMed  Google Scholar 

  154. Farrell JA, O'Farrell PH (2014) From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition. Annu Rev Genet 48:269–294. doi:10.1146/annurev-genet-111212-133531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. de Nooij JC, Letendre MA, Hariharan IK (1996) A cyclin-dependent kinase inhibitor, Dacapo, is necessary for timely exit from the cell cycle during Drosophila embryogenesis. Cell 87(7):1237–1247

    Article  PubMed  Google Scholar 

  156. Lane ME, Sauer K, Wallace K, Jan YN, Lehner CF, Vaessin H (1996) Dacapo, a cyclin-dependent kinase inhibitor, stops cell proliferation during Drosophila development. Cell 87(7):1225–1235

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Polymenis or Brian K. Kennedy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Polymenis, M., Kennedy, B.K. (2017). Unbalanced Growth, Senescence and Aging. In: Gotta, M., Meraldi, P. (eds) Cell Division Machinery and Disease. Advances in Experimental Medicine and Biology, vol 1002. Springer, Cham. https://doi.org/10.1007/978-3-319-57127-0_8

Download citation

Publish with us

Policies and ethics