Skip to main content

Advertisement

Log in

Context- and dose-dependent modulatory effects of naringenin on survival and development of Drosophila melanogaster

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Naringenin, the predominant bioflavonoid found in grapefruit and tomato has diverse bioactive properties that encompass anti-carcinogenic, anti-inflammatory, anti-atherogenic, anti-estrogenic, anti-hyperlipidemic and anti-hyperglycemic characteristics. Naringenin has not been explored for its pro-longevity traits in fruit flies. Therefore, the current study explores its influence on longevity, fecundity, feeding rate, larval development, resistance to starvation stress and body weight in male and female wild-type Drosophila melanogaster Canton-S flies. Flies were fed with normal and high fat diets respectively. The results implied hormetic effects of naringenin on longevity and development in flies. In flies fed with standard and high fat diets, lower concentrations of naringenin (200 and 400 µM) augmented mean lifespan while higher concentrations (600 and 800 µM) were consistently lethal. However, enhanced longevity seen at 400 µM of naringenin was at the expense of reduced fecundity and food intake in flies. Larvae reared on standard diet having 200 µM of naringenin exhibited elevated pupation and emergence as flies. Eclosion time was hastened in larvae reared on standard diet having 200 µM of naringenin. Female flies fed with a standard diet having 200 and 400 µM of naringenin were more resistant to starvation stress. Reduction in body weight was observed in male and female flies fed with a high fat diet supplemented with 200 and 400 µM of naringenin respectively. Collectively, the results elucidated a context- and dose-dependent hormetic efficacy of naringenin that varied with gender, diet and stage of lifecycle in flies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appenzeller-Herzog C, Hall MN (2012) Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol 22:274–282

    Article  CAS  PubMed  Google Scholar 

  • Bao Y, Fenwick R (2004) Phytochemicals in health and disease. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 128:546–552

    Article  CAS  PubMed  Google Scholar 

  • Benavente-García O, Castillo J, Marin FR, Ortuño A, Del Río JA (1997) Uses and properties of citrus flavonoids. J Agric Food Chem 45:4505–4515

    Article  Google Scholar 

  • Borradaile NM, de Dreu LE, Huff MW (2003) Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Diabetes 52:2554–2561

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Gaurav D, Rachna K, Ivo I, Vittorio C (2015) What is hormesis and its relevance to healthy aging and longevity? Biogerontology 16:693–707

    Article  PubMed  Google Scholar 

  • Chen Z, Li Y, Han J, Wang J, Yin J, Li J, Tian H (2011) The double-edged effect of autophagy in pancreatic beta cells and diabetes. Autophagy 7:12–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chibnall J (2010) Healthy brain aging: a road map. Clin Geriatr Med 26:116Dietz

    Google Scholar 

  • Davies JN, Hobson GE, McGlasson W (1981) The constituents of tomato fruit—the influence of environment, nutrition, and genotype. Crit Rev Food Sci Nutr 15:205–280

    Article  CAS  PubMed  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328:321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grünz G, Haas K, Soukup S, Klingenspor M, Kulling SE, Daniel H, Spanier B (2012) Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech Ageing Dev 133:1–10

    Article  PubMed  Google Scholar 

  • Guthrie N, Carroll K (1998) Inhibition of mammary cancer by citrus flavonoids. In: Manthey JA, Buslig BS (eds) Flavonoids in the living system. Springer, Berlin, pp 227–236

    Chapter  Google Scholar 

  • Hoffmann GR (2009) A perspective on the scientific, philosophical, and policy dimensions of hormesis. Dose-Response 7:08–023

    Article  Google Scholar 

  • Hsu CL, Yen GC (2008) Phenolic compounds: evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol Nutr Food Res 52:624–625

    Article  CAS  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Lau FC (2007) Fruit polyphenols and their effects on neuronal signaling and behavior in senescence. Ann N Y Acad Sci 1100:470–485

    Article  CAS  PubMed  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Willis LM (2009) Grape juice, berries, and walnuts affect brain aging and behavior. J Nutr 139:1813S–1817S

    Article  CAS  PubMed  Google Scholar 

  • Joshi A, Shiotsugu J, Mueller LD (1996) Phenotypic enhancement of longevity by environmental urea in Drosophila melanogaster. Exp Geront 31:533–544

    Article  CAS  Google Scholar 

  • Jumbo-Lucioni P, Ayroles JF, Chambers MM, Jordan KW, Leips J, Mackay TF, De Luca M (2010) Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster. BMC Genom 11:297

    Article  Google Scholar 

  • Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M (1999) Quantitation of flavonoid constituents in citrus fruits. J Agric Food Chem 47:3565–3571

    Article  CAS  PubMed  Google Scholar 

  • Konishi F, Kamiya S, Esaki S (1983) Synthesis and taste of naringenin 7-O-(2-O-α-l-lyxopyranosyl-β-d-galactopyranoside) and its dihydrochalcone derivative. Agric Biol Chem 47:1633–1635

    Article  CAS  Google Scholar 

  • Le Bourg É (2001) Oxidative stress, aging and longevity in Drosophila melanogaster. FEBS Lett 498:183–186

    Article  PubMed  Google Scholar 

  • Le Bourg É (2015) Fasting and other mild stresses with hormetic effects in Drosophila melanogaster can additively increase resistance to cold. Biogerontology 16:517–527

    Article  PubMed  Google Scholar 

  • Lee K-S et al (2010) Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res 13:561–570

    Article  CAS  PubMed  Google Scholar 

  • Li P, Callery PS, Gan L-S, Balani SK (2007) Esterase inhibition by grapefruit juice flavonoids leading to a new drug interaction. Drug Metab Dispos 35:1203–1208

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  PubMed  Google Scholar 

  • Meijer AJ, Codogno P (2008) Autophagy: a sweet process in diabetes. Cell Metab 8:275–276

    Article  CAS  PubMed  Google Scholar 

  • Middleton E Jr, Kandaswami C (1994) The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer. Chapman and Hall, The flavonoids London

    Google Scholar 

  • Miquel J, Economos AC (1979) Favorable effects of the antioxidants sodium and magnesium thiazolidine carboxylate on the vitality and life span of Drosophila and mice. Exp Geront 14:279–285

    Article  CAS  Google Scholar 

  • Mozayani A, Raymon L (2011) Handbook of drug interactions: a clinical and forensic guide. Springer, Berlin

    Google Scholar 

  • Muller AP, de Oliveira Dietrich M, de Assis AM, Souza DO, Portela LV (2013) High saturated fat and low carbohydrate diet decreases lifespan independent of body weight in mice. Longev Healthspan 2:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulvihill EE, Huff MW (2010) Antiatherogenic properties of flavonoids: implications for cardiovascular health. Can J Cardiol 26:17A–21A

    Article  CAS  PubMed  Google Scholar 

  • Mulvihill EE et al (2009) Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor–null mice with diet-induced insulin resistance. Diabetes 58:2198–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Andrade R et al (2008) Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation. Diabetes Obes Metab 10:1097–1104

    Article  CAS  PubMed  Google Scholar 

  • Rattan SIS (2012) Rationale and methods of discovering hormetins as drugs for healthy aging. Exp Op Drug Disc 7:439–448

    Article  CAS  Google Scholar 

  • Ruh MF, Zacharewski T, Connor K, Howell J, Chen I, Safe S (1995) Naringenin: a weakly estrogenic bioflavonoid that exhibits antiestrogenic activity. Biochem Pharmacol 50:1485–1493

    Article  CAS  PubMed  Google Scholar 

  • Semalty A, Semalty M, Singh D, Rawat M (2010) Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. J Inclusion Phenom 67:253–260

    Article  CAS  Google Scholar 

  • Silberberg R, Silberberg M (1955) Life span of mice fed a high fat diet at various ages. Can J Biochem Physiol 33:167–173

    Article  CAS  PubMed  Google Scholar 

  • Singh R et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueng Y-F, Chang Y-L, Oda Y, Park SS, Liao J-F, Lin M-F, Chen C-F (1999) In vitro and in vivo effects of naringin on cytochrome P450-dependent monooxygenase in mouse liver. Life Sci 65:2591–2602

    Article  CAS  PubMed  Google Scholar 

  • van Acker FA, Schouten O, Haenen GR, van der Vijgh WJ, Bast A (2000) Flavonoids can replace α-tocopherol as an antioxidant. FEBS Lett 473:145–148

    Article  PubMed  Google Scholar 

  • Wagner D, Spahn-Langguth H, Hanafy A, Koggel A, Langguth P (2001) Intestinal drug efflux: formulation and food effects. Adv Drug Del Rev 50:S13–S31

    Article  CAS  Google Scholar 

  • Wang C et al (2013) The effect of resveratrol on lifespan depends on both gender and dietary nutrient composition in Drosophila melanogaster. Age 35:69–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • William WJ et al (2007) Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci 104:8253–8256

    Article  Google Scholar 

  • Wunderlich SM, Piemonte J (2012) Food and drug interactions. In: Mozayani A, Raymon L (eds) Handbook of drug interactions. Springer, Berlin, pp 479–497

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Dr. N.B. Ramachandra at Mysore University, National Drosophila Stock Centre, India, for providing the wild-type Canton-S fly strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavitha Thirumurugan.

Ethics declarations

Conflicts of Interest

No potential conflicts of interest were disclosed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, D., Sen, S., Chatterjee, R. et al. Context- and dose-dependent modulatory effects of naringenin on survival and development of Drosophila melanogaster . Biogerontology 17, 383–393 (2016). https://doi.org/10.1007/s10522-015-9624-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-015-9624-6

Keywords

Navigation