Skip to main content

Food and Drug Interactions

  • Chapter
  • First Online:
Handbook of Drug Interactions

Abstract

The relationships and interactions between foods, the nutrients they contain, and drugs have gained tremendous recognition in the healthcare and medical fields. Certain foods and specific nutrients in foods, if ingested concurrently with some drugs, may affect the overall bioavailability, pharmacokinetics, pharmacodynamics, and therapeutic efficacy of the medications. Furthermore, the therapeutic efficacy of many drugs depends on the nutritional status of the individual. In other words, the presence or absence of some nutrients in the gastrointestinal tract and/or in the body’s physiological system, such as in the blood, can enhance or impair the rate of drug absorption and metabolism resulting in treatment failure. These types of interactions are considered to be nutrient–drug interactions.

There are also drug–nutrient interactions, which mean that the presence of some drugs can significantly affect the food and nutrient metabolism and bioavailability in humans. Medications can alter appetite and taste, and also change the absorption and metabolism of nutrients. This can lead to impaired nutritional status, such as depletion of some minerals and vitamins from the digestive system and sometimes weight problems. The use of certain drugs may affect the GI tract function and lead to a loss of body electrolytes and fluid. Limiting prescription drugs to essential medications for as brief a period as possible and periodic re-evaluations are essential for minimizing adverse reactions. There are many clinical issues and questions regarding drug–nutrient interactions which require further research. However, there is already enough evidence to conclude that some drugs affect nutritional status, sometimes adversely, and that nutritional factors can alter the therapeutic efficacy of some drugs significantly. This chapter describes some of the more common interactions between food and drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas JA. Drug–nutrient interactions. Nutr Rev 53:271–282 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. Kirk JK. Significant drug–nutrient interactions. Am Family Physician 51:1175–1182 (1995).

    CAS  Google Scholar 

  3. Sultana N, Arayne MS, Furgan H. In vitro availability of lomefloxacin hydrochloride in the presence of essential and trace elements. Pak J Pharm Sci 18(3):59–65 (2005).

    PubMed  CAS  Google Scholar 

  4. Bennett WM. Drug interactions and consequences of sodium restriction. Am J Clin Nutr 65(Suppl 2):678S–681S (1997).

    PubMed  CAS  Google Scholar 

  5. Houlihan CA, Allen TJ, Baxter AL, Panangiotopoulos S, Casley DJ, Cooper ME, Jerums G. A low-sodium diet potentiates the effects of losartan in type 2 diabetes. Diabetes Care 25(4):663–71 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. Ameer B and Weintraub RA. Drug interaction with grapefruit juice. Clin Pharmacokine 33:103–121 (1997).

    Article  CAS  Google Scholar 

  7. Li P, Callery PS, Gan LS, Balani SK. Esterase inhibition by grapefruit juice flavonoids leading to new drug interaction. Drug Metab Dispos 35(7):1203–08 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Dresser GK, Bailey DG. The effects of fruit juices on drug disposition: a new model for drug interactions. Eur J Clin Invest 33(Suppl 2):10–6 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. Wagner D, Spahn-Langguth H, Hanafy A, Langguth P. Intestinal drug efflux: formulation and food effects. Adv Drug Deliv Review 50(Suppl 1):513–531 (2001).

    Google Scholar 

  10. de Castro WV, Mertens-Talcott S, Derendorf H, Butterweck V. Grapefruit juice and its components inhibit P-glycoprotein (ABCB1) mediated transport of talinolol in Caco-2 cells. J Pharm Sci 96(10):2808–17 (2007).

    Article  PubMed  Google Scholar 

  11. Sica DA. Interaction of grapefruit juice and calcium channel blockers. Am J Hypertens Med 19(7):768–73 (2006).

    Article  CAS  Google Scholar 

  12. Kiani J, Imam SZ. Medicinal importance of grapefruit juice and its interaction with various drugs. Nutr J 6:33 (2007).

    Article  PubMed  Google Scholar 

  13. Karpman HL. Is grapefruit juice harmful? Internal Medicine Alert 23:1–4 (2001).

    Google Scholar 

  14. Noreddin AM, El-Khatib W, Haynes V. Optimal dosing design for antibiotic therapy in the elderly: a pharmacokinetic and pharmacodynamic perspective. Recent Patents Anti-Infect Drug Disc 3(1):45–52 (2008).

    Article  CAS  Google Scholar 

  15. Pronsky, Z, Crowe, J. Assessment: Food-Drug Interactions. In: Mahan LK and Escott-Stump S, eds. Krause’s food and nutrition therapy. Philadelphia: Saunders, 2008:432–453.

    Google Scholar 

  16. Sconce E, Avery P, Wynne H, Kamali F. Vitamin K supplementation can improve stability of anticoagulation for patients with unexplained variability in response to warfarin. Blood 109(6):2419–23 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. Reese AM, Farnett LE, Lyons RM, et al. Low dose vitamin K to augment anticoagulation control. Pharmacotherapy 25:1746–1751 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. Fork SK, Misita CP, Shilliday BB, et al. Prospective study of supplemental vitamin K therapy in patients on oral anticoagulants with unstable International Normalize Ratios. J Thromb Thrombolysis 24:23–27 (2007).

    Article  Google Scholar 

  19. Rombouts EK, Rosendaal FR, Van Der Meer FJ. Daily vitamin K supplementation improves anticoagulant stability. J Thromb Haemost 5:2043–2048 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. Lamson, DW, Brignall MS. Antioxidants in cancer therapy; their actions and interactions with oncologic therapies. Altern Med Rev 4:304–329 (1999).

    PubMed  CAS  Google Scholar 

  21. Norman H, Butrum R, Feldman E, Heber D, Nixon D, Picciano M, Rivlin R, Simopoulos A, Wargovich M, Weisburger E, Zeisel S. The role of dietary supplements during cancer therapy. J Nutr 133:3794S–3799S (2003).

    PubMed  CAS  Google Scholar 

  22. Chen J, Power KA, Mann J, Cheng A, Thompson LU. Flaxseed alone or in combination with tamoxifen inhibits MCF-7 breast tumor growth in ovariectomized athymic mice with high circulating levels of estrogen. Exp Biol Med 232(8):1071–80 (2007).

    Article  CAS  Google Scholar 

  23. Sacco SM, Chen J, Power KA, Ward WE, Thompson LU. Lignan-rich sesame seeds negates the tumor-inhibitory effect of tamoxifen but maintains bone health in a postmenopausal athymic mouse model with estrogen-responsive breast tumors. Menopause 15(1):171–9 (2008).

    PubMed  Google Scholar 

  24. Ju YH, Doerge DR, Allred KF, Allred CD, Helferich WG. Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer Res 62(9):2474–2477 (2002).

    PubMed  CAS  Google Scholar 

  25. Messina MJ, Loprinzi CL. Soy for breast cancer survivors: a critical review of the literature. J Nutr 131(11 Suppl):3095S–3108S (2001).

    PubMed  CAS  Google Scholar 

  26. Doerge DR, Chang HC. Inactivation of thyroid peroxidase by soy isoflavones, in vitro and in vivo. J Chromatogr B Analyt Technol Biomed Life Sci 777: 269–79 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. Jabbar MA, Larrea J, Shaw RA. Abnormal thyroid function tests in infants with congenital hypothyroidism: the influence of soy-based formula. J Am Coll Nutr 16:280–2 (1997).

    PubMed  CAS  Google Scholar 

  28. Messina, M et. al. Effects of soy protein and soybean isoflavones on thyroid function in healthy adults and hypothyroid patients: a review of the relevant literature. Thyroid 16(3):249–58 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. Khanna D, Park GS, Paulus HE, Simpson KM, Elashoff D, Cohen SB, Emery P, Dorrier C, Furst DE. Reduction of the efficacy of methotrexate by the use of folic acid: post hoc analysis from two randomized controlled studies. Arthritis Rheum 52(10):3030–8 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. Chladek J, Simkova M, Vaneckova J, Hroch M, Chladkova J, Martinkova J, Vavrova J, Beranek M. The effect of folic acid supplementation on the pharmacokinetics and pharmacodynamics of oral methotrexate during the remission-induction period of treatment for moderate-to-severe plaque psoriasis. Eur J Clin Pharamacol 64(4):347–55 (2008).

    Article  CAS  Google Scholar 

  31. Genser D. Food and drug interaction: consequences for the nutrition/health status. Ann Nutr Metab 52(Supp 1):29–32 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. Lamy PP. Effects of diet and nutrition on drug therapy. J Am Geriatr Soc 30:S99-S112 (1982).

    PubMed  CAS  Google Scholar 

  33. Akamine D, Filho MK, Peres CM. Drug-nutrient interactions in elderly people. Curr Opin Clin Nutr Metab Care10(3):304–10 (2007).

    Article  PubMed  Google Scholar 

  34. Alonso-Aperte E, Varela-Moreiras G. Drug –nutrient interaction. Eur J Clin Nutr 54(Supple 1): s69–74 (2000).

    PubMed  CAS  Google Scholar 

  35. Roe DA. Effects of drugs on nutrition. Life Science 15:1219–34 (1974).

    Article  CAS  Google Scholar 

  36. Thomas JA and Markovac J. Aspects of neural tube defects: a mini review. Toxic Substances J 13:303–12 (1994).

    CAS  Google Scholar 

  37. Hirano T, Yasuda S, Osaka Y, Asari M, Kobayashi M, Itagaki S, Iseki K. The inhibitory effects of fluoroquinolones on L-carnitine transport in placental cell line BeWo. Int J Pharm 351(1–2):113–8 (2007).

    PubMed  Google Scholar 

  38. Trasobares E, Corbaton A, Gonzalez-Estecha M, Lopez-Colon JL, Pratas P, Olivan P, Sanchez JA, Arroyo M. Effects of angiotensin-converting enzyme inhibitors (ACE i) on zinc metabolism in patients with heart failure. J Trace Elem Med Biol 21(Suppl 1):53–5 (2007).

    Article  PubMed  CAS  Google Scholar 

  39. Atkinson RL. Use of drugs in the treatment of obesity. Ann Rev Nutr 17:383–404 (1997).

    Article  CAS  Google Scholar 

  40. O’Rourke M. Smell no evil. Risk Management. 56(6):16 (2009).

    Google Scholar 

  41. Tschoner A, Engl J, Laimer M, Kaser S, Rettenbacher M, Fleischhacker WW, Patsch JR, Ebenbichier CF. Metabolic side effects of antipsychotic medication. Int J Clin Pract 61(8):1356–70 (2007).

    Article  PubMed  CAS  Google Scholar 

  42. Treatment recommendations for patients with eating disorders. Am J Psychiat 163(7): 5 (2006).

    Google Scholar 

  43. Drieling T, Biedermann NC, Scharer LO, Strobl N, Langosch JM. Psychotropic drug-induced change of weight: a review. Fortschr Neurol Psychiatr 75(2):65–80 (2007).

    Article  PubMed  CAS  Google Scholar 

  44. Mirenda J and Broyles G. Propofol as used for sedation in the ICU. Chest 108:539–548 (1995).

    Article  PubMed  CAS  Google Scholar 

  45. Navari R. Pharmacological Management of Chemotherapy-Induced Nausea and Vomiting: Focus on Recent Developments Drugs. 69(5): 515–534 (2009).

    Article  PubMed  CAS  Google Scholar 

  46. Adams L, Shepard N, Caruso R, Norling M, et al. Putting Evidence Into Practice®: Evidence-Based Interventions to Prevent and Manage Anorexia. Clin J Oncol Nurs. 13(1): 95–102 (2009).

    Article  PubMed  Google Scholar 

  47. Filipattos TD, Derdemezis CS, Gazi IF, Nakou ES, Mikhailidis DP, Elisaf MS. Orlistat-associated adverse effects and drug interactions: a critical review. Drug Saf 31(1):53–65 (2008).

    Article  Google Scholar 

  48. Couris RR, Tataronis GR, Dallal GE, Blumberg JB and Dwyer JT. Assessment of healthcare professionals’ knowledge about warfarin-vitamin K drug-nutrient interactions. J Am Coll Nutr 19:439–45 (2000).

    PubMed  CAS  Google Scholar 

  49. Simpson GM and Gratz SS. Comparison of the pressor effect of tyramine after treatment with phenelzine and moclobemide in healthy volunteer. Clin Pharmacol Therap 52:286–291 (1992).

    Article  CAS  Google Scholar 

  50. Nicholls MG. Interaction of diuretics and electrolytes in congestive heart failure. Am J Cardiol 65:17E (1990).

    Article  PubMed  CAS  Google Scholar 

Related Websites

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahla M. Wunderlich Ph.D., R.D., F.A.C.N. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wunderlich, S.M., Piemonte, J. (2012). Food and Drug Interactions. In: Mozayani, A., Raymon, L. (eds) Handbook of Drug Interactions. Humana Press. https://doi.org/10.1007/978-1-61779-222-9_12

Download citation

Publish with us

Policies and ethics