Skip to main content
Log in

Partial Cell Reprogramming as a Way to Revitalize Living Systems

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript
  • 8 Altmetric

Abstract

Aging and associated diseases are acute problems of modern biology and medicine. Although aging cannot currently be prevented, its impact on the lifespan and health of older adults can potentially be minimized through interventions aimed at returning cells to normal function. The constant search for ways to rejuvenate and improve the regenerative capacity of cells led to the discovery in 2016 of a partial reprogramming method based on short-term expression of reprogramming factors (Oct4, Sox2, Klf4, and c-Myc). As a result, the youthful epigenetic signature of aging cells is restored. The effectiveness of the method is shown as in the system in vitro and in vivo. The presented review discusses the main successes of partial reprogramming, as well as the problems and unresolved questions that researchers have encountered. Data on molecular changes during the process of partial reprogramming are discussed separately. The partial reprogramming method provides a wide range of opportunities for fundamental research on aging and rejuvenation. Further work in this direction may lead to the development of therapeutic strategies to alleviate age-related diseases and, thus, improve health and longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abad, M., Mosteiro, L., Pantoja, C., Cañamero, M., Rayon, T., Ors, I., Graña, O., Megías, D., Domínguez, O., Martínez, D., Manzanares, M., Ortega, S., and Serrano, M., Reprogramming in vivo produces teratomas and iPS cells with totipotency features, Nature, 2013, vol. 502, p. 340. https://doi.org/10.1038/nature12586

    Article  CAS  PubMed  Google Scholar 

  2. Alle, Q., Le Borgne, E., Bensadoun, P., Lemey, C., Béchir, N., Gabanou, M., Estermann, F., Bertrand-Gaday, C., Pessemesse, L., Toupet, K., Vialaret, J., Hirtz, C., Noël, D., Jorgensen, C., Casas, F., Milhavet, O., and Lemaitre, J.-M., A single short reprogramming early in life improves fitness and increases lifespan in old age, BioRxiv, 2021, vol. 21, p. e13714. https://doi.org/10.1111/acel.13714

    Article  CAS  Google Scholar 

  3. Bell, C.G., Lowe, R., Adams, P.D., Baccarelli, A.A., Beck, S., Bell, J.T., Christensen, B.C., Gladyshev, V.N., Heijmans, B.T., Horvath, S., Ideker, T., Issa, J.P.J., Kelsey, K.T., Marioni, R.E., Reik, W., et al., DNA methylation aging clocks: challenges and recommendations, Genome Biol., 2019, vol. 20, p. 249. https://doi.org/10.1186/s13059-019-1824-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. Blagosklonny, M.V., TOR-centric view on insulin resistance and diabetic complications: perspective for endocrinologists and gerontologists, Cell Death Dis., 2013, vol. 4, p. e964. https://doi.org/10.1038/cddis.2013.506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bocklandt, S., Lin, W., Sehl, M.E., Sánchez, F.J., Sinsheimer, J.S., Horvath, S., and Vilain, E., Epigenetic predictor of age, PLoS One, 2011, vol. 6, p. e14821. https://doi.org/10.1371/journal.pone.0014821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brandhorst, S., Choi, I.Y., Wei, M., Cheng, C.W., Sedrakyan, S., Navarrete, G., Dubeau, L., Yap, L.P., Park, R., Vinciguerra, M., Di Biase, S., Mirzaei, H., Mirisola, M.G., Childress, P., Ji, L., Groshen, S., et al., A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan, Cell Metab., 2015, vol. 22, p. 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brett, J.O. and Rando, T.A., Alive and well? Exploring disease by studying lifespan, Curr. Opin. Genet. Dev., 2014, vol. 26, p. 33.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, Y., Lüttmann, F.F., Schoger, E., Schöler, H.R., Zelarayán, L.C., Kim, K.P., Haigh, J.J., Kim, J., and Braun, T., Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice, Science, 2021, vol. 373, p. 80.

    Article  Google Scholar 

  9. Childs, B.G., Durik, M., Baker, D.J., and Van Deursen, J.M., Cellular senescence in aging and age-related disease: from mechanisms to therapy, Nat. Med., 2015, vol. 21, p. 1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chondronasiou, D., Gill, D., Mosteiro, L., Urdinguio, R.G., Berenguer-Llergo, A., Aguilera, M., Durand, S., Aprahamian, F., Nirmalathasan, N., Abad, M., Martin-Herranz, D.E., Stephan-Otto Attolini, C., Prats, N., et al., Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming, Aging Cell, 2022, vol. 21, p. e13578. https://doi.org/10.1111/acel.13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Conboy, I.M., Conboy, M.J., Wagers, A.J., Girma, E.R., Weismann, I.L., and Rando, T.A., Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature, 2005, vol. 433, p. 760.

    Article  CAS  PubMed  Google Scholar 

  12. Cuervo, A.M., Bergamini, E., Brunk, U.T., Dröge, W., Ffrench, M., and Terman, A., Autophagy and aging: the importance of maintaining “clean” cells, Autophagy, 2005, vol. 1, p. 131. https://doi.org/10.4161/auto.1.3.2017

    Article  PubMed  Google Scholar 

  13. Dungan, C.M., Figueiredo, V.C., Wen, Y., VonLehmden, G.L., Zdunek, C.J., Thomas, N.T., Mobley, C.B., Murach, K.A., Brightwell, C.R., Long, D.E., Fry, C.S., Kern, P.A., McCarthy, J.J., and Peterson, C.A., Senolytic treatment rescues blunted muscle hypertrophy in old mice, GeroScience, 2022, vol. 44, p. 1925. https://doi.org/10.1007/s11357-022-00542-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Galkin, F., Mamoshina, P., Aliper, A., de Magalhães, J.P., Gladyshev, V.N., and Zhavoronkov, A., Biohorology and biomarkers of aging: current state-of-the-art, challenges and opportunities, Ageing Res. Rev., 2020, vol. 60, p. e60.101050. https://doi.org/10.1016/j.arr.2020.101050

  15. Gems, D. and Partridge, L., Genetics of longevity in model organisms: debates and paradigm shifts, Annu. Rev. Physiol., 2013, vol. 75, p. 621.

    Article  CAS  PubMed  Google Scholar 

  16. Gill, D., Parry, A., Santos, F., Okkenhaug, H., Todd, C.D., Hernando-Herraez, I., Stubbs, T.M., Milagre, I., and Reik, W., Multi-omic rejuvenation of human cells by maturation phase transient reprogramming, Elife, 2022, vol. 11, p. e71624. https://doi.org/10.7554/eLife.71624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gladyshev, V.N., Kritchevsky, S.B., Clarke, S.G., Cuervo, A.M., Fiehn, O., de Magalhães, J.P., Mau, T., Maes, M., Moritz, R.L., Niedernhofer, L.J., Van Schaftingen, E., Tranah, G.J., Walsh, K., Yura, Y., Zhang, B., and Cummings, S.R., Molecular damage in aging, Nature Aging, 2021,vol. 1, p. 1096. https://doi.org/10.1038/s43587-021-00150-3

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guan, J., Wang, G., Wang, J., Zhang, Z., Fu, Y., Cheng, L., Meng, G., Lyu, Y., Zhu, J., Li, Y., Wang, Y., Liuyang, S., Liu, B., Yang, Z., He, H., Zhong, X., Chen, Q., et al., Chemical reprogramming of human somatic cells to pluripotent stem cells, Nature, 2022, vol. 605, p. 325.

    Article  CAS  PubMed  Google Scholar 

  19. Guderyon, M.J., Chen, C., Bhattacharjee, A., Ge, G., Fernandez, R.A., Gelfond, J.A.L., Gorena, K.M., Cheng, C.J., Li, Y., Nelson, J.F., Strong, R.J., Hornsby, P.J., Clark, R.A., and Li, S., Mobilization-based transplantation of young-donor hematopoietic stem cells extends lifespan in mice, Aging Cell, 2020, vol. 19, p. e13110. https://doi.org/10.1111/acel.13110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haigis, M.C. and Yankner, B.A., The aging stress response, Mol. Cell, 2010, vol. 40, p. 333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hishida, T., Yamamoto, M., Hishida-Nozaki, Y., Shao, C., Huang, L., Wang, C., Shojima, K., Xue, Y., Hang, Y., Shokhirev, M., Memczak, S., Sahu, S.K., Hatanaka, F., Ros, R.R., Maxwell, M., et al., In vivo partial cellular reprogramming enhances liver plasticity and regeneration, Cell Rep., 2022, vol. 39, p. 110730. https://doi.org/10.1016/j.celrep.2022.110730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hofmann, J.W., Zhao, X., De Cecco, M., Peterson, A.L., Pagliaroli, L., Manivannan, J., Hubbard, G.B., Ikeno, Y., Zhang, Y., Feng, B., Li, X., Serre, T., Qi, W., Van Remmen, H., Miller, R.A., Bath, K.G., et al., Reduced expression of MYC increases longevity and enhances healthspan, Cell, 2015, vol. 160, p. 477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horvath, S., DNA methylation age of human tissues and cell types, Genome Biol., 2013, vol. 14, p. R115.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., Ge, J., Xu, J., Zhang, Q., Zhao, Y., and Deng, H., Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds, Science, 2013, vol. 341, p. 651.

    Article  CAS  PubMed  Google Scholar 

  25. Hu, K., All roads lead to induced pluripotent stem cells: the technologies of iPSC generation, Stem Cells Dev., 2014, vol. 23, p. 1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, Y., Jeong, J., and Choi, D., Small-molecule-mediated reprogramming: a silver lining for regenerative medicine, Exp. Mol. Med., 2020, vol. 52, p. 213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klawitter, S., Fuchs, N.V., Upton, K.R., Muñoz-Lopez, M., Shukla, R., Wang, J., Garcia-Cañadas, M., Lopez-Ruiz, C., Gerhardt, D.J., Sebe, A., Grabundzija, I., Merkert, S., Gerdes, P., Pulgarin, J.A., Bock, A., Held, U., Witthuhn, A., Haase, A., Sarkadi, B., … and Schumann, G.G., Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells, Nat. Commun., 2016, vol. 7, p. 10286. https://doi.org/10.1038/ncomms10286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koch, C.M., Reck, K., Shao, K., Lin, Q., Joussen, S., Ziegler, P., Walenda, G., Drescher, W., Opalka, B., May, T., Brummendorf, T., Zenke, M., Saric, T., and Wagner, W., Pluripotent stem cells escape from senescenceassociated DNA methylation changes, Genome Res., 2013, vol. 23, p. 248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koch, C.M. and Wagner, W., Epigenetic-aging-signature to determine age in different tissues, Aging (Albany, NY), 2011, vol. 3, p. 1018.

    Article  CAS  PubMed  Google Scholar 

  30. Lapasset, L., Milhavet, O., Prieur, A., Besnard, E., Babled, A., Ät-Hamou, N., Leschik, J., Pellestor, F., Ramirez, J.M., De Vos, J., Lehmann, S., and Lemaitre, J.M., Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state, Genes Dev., 2011, vol. 25, p. 2248. https://doi.org/10.1101/gad.173922.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, C., Raffaghello, L., Brandhorst, S., Safdie, F.M., Bianchi, G., Martin-Montalvo, A., Pistoia, V., Wei, M., Hwang, S., Merlino, A., Emionite, L., De Cabo, R., and Longo, V.D., Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy, Sci. Transl. Med., 2012, vol. 4, p. 124ra27. https://doi.org/10.1126/scitranslmed.3003293

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee, C., Safdie, F.M., Raffaghello, L., Wei, M., Madia, F., Parrella, E., Hwang, D., Cohen, P., Bianchi, G., and Longo, V.D., Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index, Cancer Res., 2010, vol. 70, p. 1564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lewis-McDougall, F.C., Ruchaya, P.J., Domenjo-Vila, E., Shin Teoh, T., Prata, L., Cottle, B.J., Clark, J.E., Punjabi, P.P., Awad, W., Torella, D., Tchkonia, T., Kirkland, J.L., and Ellison-Hughes, G.M., Aged-senescent cells contribute to impaired heart regeneration, Aging Cell, 2019, vol. 18, p. e12931. https://doi.org/10.1111/acel.12931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, Q., Weidner, C.I., Costa, I.G., Marioni, R.E., Ferreira, M.R.P., Deary, I.J., and Wagner, W., DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy, Aging (Albany, NY), 2016, vol. 8, p. 394.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, X., Ouyang, J.F., Rossello, F.J., Tan, J.P., Davidson, K.C., Valdes, D.S., Schröder, J., Sun, Y.B.Y., Chen, J., Knaupp, A.S., Sun, G., Chy, H.S., Huang, Z., Pflueger, J., Firas, J., et al., Reprogramming roadmap reveals route to human induced trophoblast stem cells, Nature, 2020, vol. 586, p. 101.

    Article  CAS  PubMed  Google Scholar 

  36. Longo, V.D. and Finch, C.E., Evolutionary medicine: from dwarf model systems to healthy centenarians?, Science, 2003, vol. 299, p. 1342.

    Article  PubMed  Google Scholar 

  37. López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G., The hallmarks of aging, Cell, 2013, vol. 153, p. 1194.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lu, A.T., Quach, A., Wilson, J.G., Reiner, A.P., Aviv, A., Raj, K., Hou, L., Baccarelli, A.A., Li, Y., Stewart, J.D., Whitsel, E.A., Assimes, T.L., Ferrucci, L., and Horvath, S., DNA methylation GrimAge strongly predicts lifespan and healthspan, Aging (Albany, NY), 2019, vol. 11, p. 303.

    Article  CAS  PubMed  Google Scholar 

  39. Lu, Y., Brommer, B., Tian, X., Krishnan, A., Meer, M., Wang, C., Vera, D.L., Zeng, Q., Yu, D., Bonkowski, M.S., Yang, J.H., Zhou, S., Hoffmann, E.M., Karg, M.M., Schultz, M.B., Kane, A.E., Davidsohn, N., et al., Reprogramming to recover youthful epigenetic information and restore vision, Nature, 2020, vol. 588, p. 124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ludwig, F.C. and Elashoff, R.M., Mortality in syngeneic rat parabionts of different chronological age, Trans. N.Y. Acad. Sci., 1972, vol. 34, p. 582.

    Article  CAS  PubMed  Google Scholar 

  41. Madeo, F., Tavernarakis, N., and Kroemer, G., Can autophagy promote longevity?, Nat. Cell Biol., 2010, vol. 12, p. 842.

    Article  CAS  PubMed  Google Scholar 

  42. Mair, W. and Dillin, A., Aging and survival: the genetics of life span extension by dietary restriction, Annu. Rev. Biochem., 2008, vol. 77, p. 727.

    Article  CAS  PubMed  Google Scholar 

  43. Manukyan, M. and Singh, P.B., Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states, Sci. Rep., 2014, vol. 4, p. 4789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marioni, R.E., Shah, S., McRae, A.F., Chen, B.H., Colicino, E., Harris, S.E., Gibson, J., Henders, A.K., Redmond, P., Cox, S.R., Pattie, A., Corley, J., Murphy, L., Martin, N.G., Montgomery, G.W., et al., DNA methylation age of blood predicts all-cause mortality in later life, Genome Biol., 2015, vol. 16, p. 25.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mertens, J., Paquola, A.C.M., Ku, M., Hatch, E., Böhnke, L., Ladjevardi, S., McGrath, S., Campbell, B., Lee, H., Herdy, J.R., Gonçalves, J.T., Toda, T., Kim, Y., Winkler, J., Yao, J., et al., Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects, Cell Stem Cell, 2015, vol. 17, p. 705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miller, J.D., Ganat, Y.M., Kishinevsky, S., Bowman, R.L., Liu, B., Tu, E.Y., Mandal, P.K., Vera, E., Shim, J.W., Kriks, S., Taldone, T., Fusaki, N., Tomishima, M.J., Krainc, D., Milner, T.A., et al., Human iPSC-based modeling of late-onset disease via progerin-induced aging, Cell Stem Cell, 2013, vol. 13, p. 691.

  47. Narasimhan, S.D., Yen, K., and Tissenbaum, H.A., Converging pathways in lifespan regulation, Curr. Biol., vol. 19, p. R657. https://doi.org/10.1016/j.cub.2009.06.013

  48. Nishimura, T., Kaneko, S., Kawana-Tachikawa, A., Tajima, Y., Goto, H., Zhu, D., Nakayama-Hosoya, K., Iriguchi, S., Uemura, Y., Shimizu, T., Takayama, N., Yamada, D., Nishimura, K., Ohtaka, M., et al., Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation, Cell Stem Cell, 2013, vol. 12, p. 114.

    Article  CAS  PubMed  Google Scholar 

  49. Ocampo, A., Reddy, P., Martinez-Redondo, P., Platero-Luengo, A., Hatanaka, F., Hishida, T., Li, M., Lam, D., Kurita, M., Beyret, E., Araoka, T., Vazquez-Ferrer, E., Donoso, D., Roman, J.L., et al., In vivo amelioration of age-associated hallmarks by partial reprogramming, Cell, 2016, vol. 167, p. 1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ohnishi, K., Semi, K., Yamamoto, T., Shimizu, M., Tanaka, A., Mitsunaga, K., Okita, K., Osafune, K., Arioka, Y., Maeda, T., Soejima, H., Moriwaki, H., Yamanaka, S., Woltjen, K., and Yamada, Y., Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation, Cell, 2014, vol. 156, p. 663.

    Article  CAS  PubMed  Google Scholar 

  51. Ohnuki, M., Tanabe, K., Sutou, K., Teramoto, I., Sawamura, Y., Narita, M., Nakamura, M., Tokunaga, Y., Nakamura, M., Watanabe, A., Yamanaka, S., and Takahashi, K., Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, p. 12426. Olova, N., Simpson, D.J., Marioni, R.E., and Chandra, T., Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity, Aging Cell, vol. 18, p. e12877. https://doi.org/10.1111/acel.12877

  52. Raffaghello, L., Lee, C., Safdie, F.M., Wei, M., Madia, F., Bianchi, G., and Longo, V.D., Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, p. 8215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rodríguez-Matellán, A., Alcazar, N., Hernández, F., Serrano, M., and Ávila, J., In vivo reprogramming ameliorates aging features in dentate gyrus cells and improves memory in mice, Stem Cell Rep., 2020, vol. 15, p. 1056.

    Article  Google Scholar 

  54. Roux, A.E., Zhang, C., Paw, J., Zavala-Solorio, J., Malahias, E., Vijay, T., Kolumam, G., Kenyon, C., and Kimmel, J.C., Diverse partial reprogramming strategies restore youthful gene expression and transiently suppress cell identity, Cell Syst., 2022, vol. 13, p. 574.

    Article  CAS  PubMed  Google Scholar 

  55. Sarkar, T.J., Quarta, M., Mukherjee, S., Colville, A., Paine, P., Doan, L., Tran, C.M., Chu, C.R., Horvath, S., Qi, L.S., Bhutani, N., Rando, T.A., and Sebastiano, V., Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells, Nat. Commun., 2020, vol. 11, p. 1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., Gould, J., Liu, S., Lin, S., Berube, P., Lee, L., Chen, J., Brumbaugh, J., Rigollet, P., Hochedlinger, K., et al., Optimal-Transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming, Cell, 2019, vol. 176, p. 928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmauck-Medina, T., Molière, A., Lautrup, S., Zhang, J., Chlopicki, S., Madsen, H.B., Cao, S., Soendenbroe, C., Mansell, E., Vestergaard, M.B., Li, Z., Shiloh, Y., Opresko, P.L., Egly, J.M., Kirkwood, T., et al., New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary, Aging (Albany, NY), 2022, vol. 14, p. 6829. https://doi.org/10.18632/aging.204248

    Article  PubMed  Google Scholar 

  58. Shahini, A., Rajabian, N., Choudhury, D., Shahini, S., Vydiam, K., Nguyen, T., Kulczyk, J., Santarelli, T., Ikhapoh, I., Zhang, Y., Wang, J., Liu, S., Stablewski, A., Thiyagarajan, R., Seldeen, K., et al., Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo, Sci. Adv., 2021, vol. 7, p. eabe5671. https://doi.org/10.1126/sciadv.abe5671

  59. Singh, P.B., Laktionov, P.P., and Newman, A.G., Deconstructing age reprogramming, J. Biosci., 2019, vol. 44, p. 106.

    Article  PubMed  Google Scholar 

  60. Smith, E.D., Kaeberlein, T.L., Lydum, B.T., Sager, J., Welton, K.L., Kennedy, B.K., and Kaeberlein, M., Age- and calorie-independent life span extension from dietary restriction by bacterial deprivation in Caenorhabditis elegans, BMC Dev. Biol., 2008, vol. 8, p. 49.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stölzel, F., Brosch, M., Horvath, S., Kramer, M., Thiede, C., Von Bonin, M., Ammerpohl, O., Middeke, M., Schetelig, J., Ehninger, G., Hampe, J., and Bornhäuser, M., Dynamics of epigenetic age following hematopoietic stem cell transplantation, Haematologica, 2017, vol. 102, p. e321. https://doi.org/10.3324/haematol.2016.160481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, vol. 126, p. 663.

    Article  CAS  PubMed  Google Scholar 

  63. Tanabe, K., Nakamura, M., Narita, M., Takahashi, K., and Yamanaka, S., Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, p. 12172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Verweij, M., Van Ginhoven, T.M., Mitchell, J.R., Sluiter, W., Van Den Engel, S., Roest, H.P., Torabi, E., Ijzermans, J.N.M., Hoeijmakers, J.H.J., and De Bruin, R.W.F., Preoperative fasting protects mice against hepatic ischemia/reperfusion injury: mechanisms and effects on liver regeneration, Liver Transplant., 2011, vol. 17, p. 695.

    Article  Google Scholar 

  65. Vizioli, M.G., Liu, T., Miller, K.N., Robertson, N.A., Gilroy, K., Lagnado, A.B., Perez-Garcia, A., Kiourtis, C., Dasgupta, N., Lei, X., Kruger, P.J., Nixon, C., Clark, W., Jurk, D., Bird, T.G., et al., Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence, Genes Dev., 2020, vol. 34, p. 428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weidner, C.I., Lin, Q., Koch, C.M., Eisele, L., Beier, F., Ziegler, P., Bauerschlag, D.O., Jöckel, K.H., Erbel, R., Mühleisen, T.W., Zenke, M., Brümmendorf, T.H., and Wagner, W., Aging of blood can be tracked by DNA methylation changes at just three CpG sites, Genome Biol., 2014, vol. 15, p. R24.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ye, J., Ge, J., Zhang, X., Cheng, L., Zhang, Z., He, S., Wang, Y., Lin, H., Yang, W., Liu, J., Zhao, Y., and Deng, H., Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds, Cell Res., 2016, vol. 26, p. 34.

    Article  CAS  PubMed  Google Scholar 

  68. Yousefzadeh, M.J., Flores, R.R., Zhu, Y., Schmiechen, Z.C., Brooks, R.W., Trussoni, C.E., Cui, Y., Angelini, L., Lee, K.A., McGowan, S.J., Burrack, A.L., Wang, D., Dong, Q., Lu, A., Sano, T., O’Kelly, R.D., et al., An aged immune system drives senescence and ageing of solid organs, Nature, 2021, vol. 594, p. s41586.

    Article  Google Scholar 

Download references

Funding

This work was financed by the Russian Science Foundation and St. Petersburg Science Foundation, project no. 22-24-20122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shorokhova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The author of this work declares that she has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviation: ESC—embryonic stem cell; eAge—epigenetic age; iPSC—induced pluripotent stem cell; OS—a combination of factors Oct4 and Sox2; OSK—a combination of factors Oct4, Sox2, and Klf4; OSKM—a combination of factors Oct4, Sox2, Klf4, and cMyc; SASP—a secretory phenotype associated with aging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shorokhova, M.A. Partial Cell Reprogramming as a Way to Revitalize Living Systems. Cell Tiss. Biol. 18, 103–114 (2024). https://doi.org/10.1134/S1990519X23700104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23700104

Keywords:

Navigation