Skip to main content
Log in

Life span alteration after irradiation in Drosophila melanogaster strains with mutations of Hsf and Hsps

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The life span alteration after γ-irradiation and/or paraquat treatment in Drosophila in wild type strain Canton-S and strains with mutations of heat shock factor (1–4 alleles) and heat shock proteins (Hsp70Ba 304, Hsp83 e6A, Hsp22 EY09909, Hsp67Bb EY099099) was investigated. Chronic low-dose rate γ-irradiation (0.017 and 0.17 cGy/h) on pre-imago stages was used as a priming dose (absorbed doses were 4 and 40 cGy). Paraquat, a free radical inducing agent, was a challenging factor (20 mM for 1 day). It was shown that chronic irradiation led to adaptive response in both sexes except homozygous males and females with mutations of Hsf 4 and Hsp70Ba 304. The gender-specific differences in stress response were discovered in wild type strain Canton-S, Hsp22 EY09909 Hsp67Bb EY09909 homozygotes and Hsp83 e6A heterozygotes: the adaptive response persisted in males, but not in females. Thus, Drosophila Hsp and Hsf mutation homozygotes did not demonstrate the adaptive response in the majority of cases, implying an important role of those genes in radiation hormesis and adaptation to stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aloy MT, Hadchity E, Bionda C et al (2008) Protective role of Hsp27 protein against Gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells. Int J Radiat Oncol Biol Phys 70:543–553

    PubMed  CAS  Google Scholar 

  • Ashburner M, Golic KG, Hawley RS (2005) Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Bases R (2006) Heat shock protein 70 enhanced deoxyribonucleic acid base excision repair in human leukemic cells after ionizing radiation. Cell Stress Chaperones 11:240–249

    Article  PubMed  CAS  Google Scholar 

  • Boreham DR, Mitchel RE (1994) Regulation of heat and radiation stress responses in yeast by hsp–104. Radiat Res 137:190–195

    Article  PubMed  CAS  Google Scholar 

  • Cameron JR (2003) Longevity is the most appropriate measure of health effects of radiation. Radiology 229:14–15

    Article  PubMed  Google Scholar 

  • Cameron JR (2005) Moderate dose rate ionizing radiation increases longevity. Br J Radiol 78:11–13

    Article  PubMed  CAS  Google Scholar 

  • Crawford DR, Davies KJ (1994) Adaptive response and oxidative stress. Environ Health Perspect 102(Suppl 10):25–28

    Article  PubMed  Google Scholar 

  • Garigan D, Hsu A-L, Fraser AG et al (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161:1101–1112

    PubMed  CAS  Google Scholar 

  • Helfand SL, Rogina B (2003) From genes to aging in Drosophila. Adv Genet 49:67–109

    Article  PubMed  CAS  Google Scholar 

  • Hunt CR, Dix DJ, Sharma GG et al (2004) Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Mol Cell Biol 24:899–911

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Shibamoto Y, Ayakawa S et al (2007) Low-dose whole-body irradiation induced radioadaptive response in C57BL/6 mice I. Radiat Res 48:455–460

    Article  Google Scholar 

  • Kabakov AE, Malyutina YV, Latchman DS (2006) Hsf1-mediated stress response can transiently enhance cellular radioresistance. Radiat Res 165:410–423

    Article  PubMed  CAS  Google Scholar 

  • Kang CM, Park KP, Cho CK et al (2002) Hspa4 (HSP70) is involved in the radioadaptive response: results from mouse splenocytes. Radiat Res 157:650–655

    Article  PubMed  CAS  Google Scholar 

  • Le Bourg E (2007) Hormetic effects of repeated exposures to cold at young age on longevity, aging and resistance to heat or cold shocks in Drosophila melanogaster. Biogerontology 8:431–444

    Article  PubMed  Google Scholar 

  • Le Bourg E, Valenti P, Payre F (2002) Lack of hypergravity-associated longevity extension in Drosophila melanogaster flies overexpressing hsp70. Biogerontology 3:355–364

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Choi SA, Lee KH et al (2001) Role of inducible heat shock protein 70 in radiation-induced cell death. Cell Stress Chaperones 6:273–281

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Park GH, Cho HN et al (2002) Induction of adaptive response by low-dose radiation in RIF cells transfected with Hspb1 (Hsp25) or inducible Hspa (Hsp70). Radiat Res 157:371–377

    Article  PubMed  CAS  Google Scholar 

  • Maisin JR, Gerber GB, Vankerkom J et al (1996) Survival and diseases in C57BL mice exposed to X rays or 3.1 MeV neutrons at an age of 7 or 21 days. Radiat Res 146:453–460

    Article  PubMed  CAS  Google Scholar 

  • Marples B (2004) Is low-dose hyper-radiosensitivity a measure of G2-phase cell radiosensitivity? Cancer Metastasis Rev 23:197–207

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto H, Hamada N, Takahashi A et al (2007) Vanguards of paradigm shift in radiation biology: radiation-induced adaptive and bystander responses. J Radiat Res (Tokyo) 48:97–106

    Article  CAS  Google Scholar 

  • McColl G, Vantipalli MC, Lithgow GJ (2005) C. elegans ortholog of mammalian Ku70 interacts with insulin-like signaling to modulate stress resistance and life span. FASEB J 19:1716–1718

    PubMed  CAS  Google Scholar 

  • Mitchel REJ (2006) Low doses of radiation are protective in vitro and in vivo: evolutionary origins. Dose-Response 4:75–90

    Article  PubMed  CAS  Google Scholar 

  • Morrow G, Battistini S, Zhang P et al (2004a) Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J Biol Chem 279:43382–43385

    Article  PubMed  CAS  Google Scholar 

  • Morrow G, Samson M, Michaud S et al (2004b) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 18:598–599

    PubMed  CAS  Google Scholar 

  • Moskalev A (2007) Radiation-induced life span alteration of Drosophila lines with genotype differences. Biogerontology 8:499–504

    Article  PubMed  Google Scholar 

  • Nose M, Wang B, Itsukaichi H et al (2001) Rescue of lethally irradiated mice from hematopoietic death by pre-exposure to 0.5 Gy X rays without recovery from peripheral blood cell depletion and its modification by OK432. Radiat Res 156:195–204

    Article  PubMed  CAS  Google Scholar 

  • Olivieri G, Bodycote J, Wolff S (1984) Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science 223:594–597

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Lee SJ, Chung HY et al (2000) Inducible heat-shock protein 70 is involved in the radioadaptive response. Radiat Res 153:318–326

    Article  PubMed  CAS  Google Scholar 

  • Parsons PA (1999) Low level exposure to ionizing radiation: do ecological and evolutionary considerations imply phantom risks? Perspect Biol Med 43:57–68

    PubMed  CAS  Google Scholar 

  • Parsons PA (2002) Radiation hormesis: challenging LNT theory via ecological and evolutionary considerations. Health Phys 82:513–516

    Article  PubMed  CAS  Google Scholar 

  • Rattan SI (2004) Hormetic mechanisms of anti-aging and rejuvenating effects of repeated mild heat stress on human fibroblasts in vitro. Rejuvenation Res 7:40–48

    Article  PubMed  Google Scholar 

  • Sierra-Rivera E, Voorhees GJ, Freeman ML (1993) Gamma irradiation increases hsp-70 in Chinese hamster ovary cells. Radiat Res 135:40–45

    Article  PubMed  CAS  Google Scholar 

  • Sorensen JG, Kristensen TN, Kristensen KV et al (2007) Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster. Exp Gerontol 42:1123–1129

    Article  PubMed  CAS  Google Scholar 

  • Tapio S, Jacob V (2007) Radioadaptive response revisited. Radiat Environ Biophys 46:1–12

    Article  PubMed  CAS  Google Scholar 

  • Upton AC (2001) Radiation hormesis: data and interpretations. Crit Rev Toxicol 31:681–695

    Article  PubMed  CAS  Google Scholar 

  • Vaiserman AM, Voitenko VP (2003) Early programming of adult longevity: demographic and experimental studies. J Anti Aging Med 6:11–20

    Article  PubMed  Google Scholar 

  • Wheeler JC, Bieschke ET, Tower J (1995) Muscle-specific expression of Drosophila hsp70 in response to aging and oxidative stress. Proc Natl Acad Sci USA 92:10408–10412

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa M, Takeda A, Misonoh J (1990) Acquired radioresistance after low dose X-irradiation in mice. J Radiat Res 31:256–262

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa M, Misonoh J, Hosokawa Y (1996) Two types of X-ray-induced radioresistance in mice: presence of 4 dose ranges with distinct biological effects. Mutat Res 358:237–243

    PubMed  Google Scholar 

  • Yonezawa M, Horie K, Kondo H et al (2004) Increase in endogenous spleen colonies without recovery of blood cell counts in radioadaptive survival response in C57BL/6 mice. Radiat Res 161:161–167

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Moskalev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moskalev, A., Shaposhnikov, M. & Turysheva, E. Life span alteration after irradiation in Drosophila melanogaster strains with mutations of Hsf and Hsps . Biogerontology 10, 3–11 (2009). https://doi.org/10.1007/s10522-008-9147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9147-5

Keywords

Navigation