Skip to main content
Log in

Survival and life span of Drosophila melanogaster in response to terahertz radiation

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Life span control is realized by the interaction of many genetic factors with the environment. Due to the development of modern technologies based on nonionized terahertz radiation (0.1–10 THz), the investigation of the influence of this radiation on living organisms is urgent. In our study, the effects of terahertz radiation on the survival and lifespan of the Oregon R line of Drosophila melanogaster were multidirectional, depending on the age of the insects. The terahertz effect on survival was negative or neutral in early life and positive in later life. In the drosophila response to terahertz radiation, sex differences were manifested. Males were not very sensitive to terahertz radiation. The survival of irradiated females increased significantly in the second half of the imago life. Irradiation of the drosophila did not significantly affect mean and maximal values of lifespan, but the gap between the values of the mean lifespans of males and females in this group of insects was increased. The mechanisms for the effects of terahertz radiation on survival and lifespan might be associated with changes in the cellular membrane, gene expression, and signaling pathways controlling these features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antsygin, V.D., Mamrashev, A.A., Nikolaev, N.A., et al., Small-size terahertz spectrometer using the second harmonic of a femtosecond fiber laser, Avtometriya, 2010, vol. 46, no. 3, p. 110.

    Google Scholar 

  2. Bondar, N.P., Kovalenko, I.L., Avgustinovich, D.F., et al., Behavioral effect of terahertz waves in male mice, Bull. Exp. Biol. Med., 2008, vol. 145, no. 4, pp. 401–405.

    Article  CAS  PubMed  Google Scholar 

  3. Bulgakova, N.A., Trunova, S.A., and Omel’yanchuk, L.V., Mutation Indyp115 extends life span in adult Drosophila melanogaster depending on sex and genetic background, Russ. J. Genet., 2004, vol. 40, no. 4, pp. 381–386.

    Article  CAS  Google Scholar 

  4. Weisman, N.Ya., Golubovsky, M.D., and Ilinsky, Yu.Yu., Interpopulation and sex-specific life span differences in human populations and their modeling in Drosophila, Usp. Gerontol., 2013, vol. 26, no. 1, pp. 66–75.

    Google Scholar 

  5. Weisman, N.Ya., Evgen’ev, M.B., and Golubovsky, M.D., Parallelism and paradox of the effect of hsf1 mutation of regulator of heat-shock proteins and l(2)gl oncosuppressor on viability and longevity of D. melanogaster, Izv. Ross. Akad. Nauk, Ser. Biol., 2012, no. 1, pp. 27–34.

    Google Scholar 

  6. Zalyubovskaya, N.P., et al., Biological activity of millimetric and submillimetric waves, Eksp. Klin. Radiol., 1970, no. 6, pp. 202–205.

    Google Scholar 

  7. Kirichuck, V.F., Ivanov, A.N., Antipova, O.N., et al., Sex-specific differences in changes of disturbed functional activity of platelets in albino rats under the effect of terahertz electromagnetic radiation at nitric oxide frequencies, Bull. Exp. Biol. Med., 2008, vol. 145, no. 1, pp. 75–77.

    Article  CAS  PubMed  Google Scholar 

  8. Fedorov, V.I., Study of biological effects of electromagnetic radiation of submillimeter part of terahertz range, Biomed. Radioelektron., 2011, no. 2, pp. 17–26.

    Google Scholar 

  9. Fedorov, V.I., Weisman, N.Ya., Nemova, E.F., et al., Postponed results of the effect of terahertz radiation on stressed Drosophila females, Byull. Med., 2012, vol. 2, no. 6. http://www.medconfer.com

    Google Scholar 

  10. Fedorov, V.I., Pogodin, A.S., Dubatolova, T.D., et al., Comparative study of effect of infrared, submillimeter, and millimeter electromagnetic radiation on wing somatic mutations in Drosophila melanogaster induced by gamma-irradiation, Biofizika, 2001, vol. 46, no. 2, pp. 298–302.

    CAS  PubMed  Google Scholar 

  11. Aigaki, T., Seong, K., and Matsuo, T., Longevity determination genes in Drosophila melanogaster, Mech. Aging Dev., 2002, vol. 123, pp. 1531–1541.

    Article  CAS  PubMed  Google Scholar 

  12. Alexandrov, B.S., Phipps, M.L., Alexandrov, L.B., et al., Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells, Sci. Rep., 2013, no. 3, p. 1184. http://www.nature.com/srep/2013/130131/srep01184/full/srep01184.html

    Google Scholar 

  13. Bland, J.M. and Altman, D.G., The logrank test, Br. Med. J., 2004, vol. 328, no. 7447, p. 1073.

    Article  Google Scholar 

  14. Bock, J., Fukuyo, Y., Kang, S., et al., Mammalian stem cells reprogramming in response to terahertz radiation, PLoS One, 2010, vol. 5, no. 12, p. 15806.

    Article  Google Scholar 

  15. Demidova, E.V., Goryachkovskaya, T.N., Malup, T.K., et al., Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GTP biosensor cells, Bioelectromagnetics, 2013, vol. 34, no. 1, pp. 15–21.

    Article  CAS  PubMed  Google Scholar 

  16. Gruntenko, N.E., Karpova, E.K., Adonyeva, N.V., et al., Juvenile hormone, 20-hydroxyecdysone and dopamine interaction in Drosophila virilis reproduction under normal and nutritional stress conditions, J. Insect Physiol., 2005, vol. 51, pp. 417–425.

    Article  CAS  PubMed  Google Scholar 

  17. Innocenti, P., Morrow, E.H., and Dowling, D.K., Mitochondrial genome evolution experimental evidence supports a sex-specific selective sieve, Science, 2011, vol. 332, pp. 845–848.

    Article  CAS  PubMed  Google Scholar 

  18. Korenstein-Ilan, A., Barbul, A., and Hasin, P., Terahertz radiation increases genomic instability in human lymphocytes, Radiat. Res., 2008, vol. 170, no. 2, pp. 224–234.

    Article  CAS  PubMed  Google Scholar 

  19. Lin, Y., Seroude, L., and Benzer, S., Extended lifespan and stress resistance in the Drosophila mutant Methuselah, Science, 1998, vol. 282, pp. 943–946.

    Article  CAS  PubMed  Google Scholar 

  20. Nuzhdin, S.V., Pasyukova, E.G., Dilda, C.H.L., et al., Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 9734–9739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pan, Z. and Chang, C., Gender and the regulation of longevity: implications for autoimmunity, Autoimmun. Rev., 2012, vol. 11, nos. 6–7, pp. 393–403.

    Article  CAS  Google Scholar 

  22. Vermeulen, C.J. and Loeschcke, V., Longevity and the stress response in Drosophila, Exp. Gerontol., 2007, vol. 42, pp. 153–159.

    Article  CAS  PubMed  Google Scholar 

  23. Wilmink, G.J. and Grundt, L.E., Current state of research on biological effects of terahertz radiation, J. Infrared Millimeter Terahertz Waive, 2011, vol. 32, no. 10, pp. 1074–1122.

    Google Scholar 

  24. Wilmink, G.J., Ibey, B.L., Roth, C.L., et al., Determination of death thresholds and identification of terahertz (THz)-specific gene expression signatures, in Proc. XXI SPIE 7562, Optical Interactions with Tissues and Cells, 2010, vol. 7562, pp. 75620K–75620K-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ya. Weisman.

Additional information

Original Russian Text © N.Ya. Weisman, V.I. Fedorov, E.F. Nemova, N.A. Nikolaev, 2013, published in Uspekhi Gerontologii, 2013, Vol. 26, No. 4, pp. 631–637.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weisman, N.Y., Fedorov, V.I., Nemova, E.F. et al. Survival and life span of Drosophila melanogaster in response to terahertz radiation. Adv Gerontol 4, 187–192 (2014). https://doi.org/10.1134/S2079057014030102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057014030102

Keywords

Navigation