Skip to main content
Log in

Geological and geotechnical models definition for 3rd level seismic microzonation studies in Central Italy

  • S.I. : Seismic Microzonation of Central Italy
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The 2016–2017 seismic events that struck central Italy led the Government to carry out a project to produce the third level Seismic Microzonation studies in 138 municipalities. These activities have involved many experts in different disciplines such as geology, geomorphology, geophysics, seismology and geotechnical engineering. This project represented the first opportunity to perform nationally coordinated third level Seismic Microzonation studies over a wide area in a quite short time (6 months). It provided the chance to improve methodological procedures, to test the reliability of methods and models for site response analyses and to produce a huge amount of validated data. This paper focuses on the contribution of geological disciplines and concerns: (a) the definition of the main “morphostructural domains” of the Central-Northern Apennines; (b) the creation of an archive of all the lithostratigraphic units occurring in the study area with their conversion into engineering-geological units and their distribution in the different morphostructural domains; (c) the construction of the reference geological and geotechnical models, which are essential to classify the territory into seismically homogeneous microzones and to perform the successive 1D and 2D numerical analyses of the local site response. The geophysical dataset acquired for the study allowed a first statistical characterization of the Vs values typical of the engineering-geological units identified in this study. Some examples of the recurrent geological and geotechnical models are shown to explain the complexity and variety of the geological and geomorphological features of the investigated area and to highlight the different seismostratigraphic behavior of rocks and cover terrains. The analysis of third level Seismic Microzonation data made it possible to identify recurrent subsoil models and to note the main stratigraphic and morphological control-factors of the ground motion modification in the different morphostructural domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agencies of the Department of Defense (2006) Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)

  • Albarello D (2017) Extensive application of seismic microzoning in Italy: methodological approaches and socio-political implications. Boll Geofis Teor Appl 58(4):253–264. https://doi.org/10.4430/bgta0205

    Article  Google Scholar 

  • Albarello D, Cesi C, Eulilli V, Guerrini F, Lunedei E, Paolucci E, Pileggi D, Puzzilli LM (2011) The contribution of the ambient vibration prospecting in seismic microzoning: an example from the area damaged by the 26th April 2009 l’Aquila (Italy) earthquake. Boll Geofis Teor Appl 52(3):513–538. https://doi.org/10.4430/bgta0013

    Article  Google Scholar 

  • Albarello D, Socco VL, Picozzi M, Foti S (2015) Seismic hazard and land management policies in Italy: the role of seismic investigations. First Break 33:87–93

    Google Scholar 

  • ASTM Committee D-18 on Soil and Rock (2017) Standard practice for classification of soils for engineering purposes (unified soil classification system) 1. ASTM International

  • Bigi S, Cantalamessa G, Centamore E, Didaskalou P, Micarelli A, Nisio S, Pennesi T, Potetti M (1997) The periadriatic basin (Marche-Abruzzi sector, Central Italy) during the Plio-Pleistocene. Giorn Geol 59:245–259

    Google Scholar 

  • Bindi D, Parolai S, Cara F, Di Giulio G, Ferretti G, Luzi L, Monachesi G, Pacor F, Rovelli A (2009) Site amplification observed in the Gubbio Basin, Central Italy: hints for lateral propagation effects. Bull Seismol Soc Am 99(2A):741–760

    Article  Google Scholar 

  • Bindi D, Luzi L, Parolai S, Di Giacomo D, Monachesi G (2011) Site effects observed in alluvial basins: the case of Norcia (central Italy). Bull Earthq Eng 9:1941–1959

    Article  Google Scholar 

  • Boccaletti M, Calamita F, Deiana G, Gelati R, Massari F, Moratti G, Ricci Lucchi F (1990) Migrating foredeep-thrust belt system in the Northern Apennines and Southern Alps. Paleo. Paleo. Paleo 77:3–14

    Article  Google Scholar 

  • Caielli MG, De Franco R, Di Fiore V, Albarello D, Catalano S, Pergalani F, Cavuoto G, Cercato M, Compagnoni M, Facciorusso J, Famiani D, Ferri F, Imposa S, Martini G, Paciello A, Paolucci E, Passeri F, Piscitelli S, Puzzilli LM, Vassallo M (2019). Extensive surface geophysical prospecting for seismic microzonation. Bull Earthq Eng (This issue)

  • Calamita F, Deiana G (1988) The arcuate shape of the Umbria-Marche-Sabina Apennines (Central Italy). Tectonophysics 146:139–147

    Article  Google Scholar 

  • Calamita F, Coltorti M, Pieruccini P, Pizzi A (1999) Evoluzione strutturale e morfogenesi plio-quaternaria dell’Appennino umbro-marchigiano tra il pedappennino umbro e la costa adriatica. Bollettino della Società Geologica Italiana 118:125–139

    Google Scholar 

  • Cavazza W, Roure F, Ziegler PA (2004) The Mediterranean area and the surrounding regions: active processes, remnants of former Tethyan oceans and related thrust belts. In: Cavazza W, Roure F, Spakman W, Stampfl GM, Ziegler PA (eds) The TRANSMED Atlas. The Mediterranean Region from crust to mantle. Springer, Berlin, pp 1–29

    Chapter  Google Scholar 

  • Centamore E, Cantalamessa G, Micarelli A, Potetti M, Berti D, Bigi S, Morelli C, Ridolfi M (1991a) Stratigrafia ed analisi di facies dei depositi del Miocene e del Pliocene inferiore dell’avanfossa marchigiano-abruzzese e delle avanfosse limitrofe. Studi Geol Camerti 1991/2:125–132

    Google Scholar 

  • Centamore E, Adamoli L, Berti D, Bigi G, Bigi S, Casnedi R, Cantalamessa G, Fumanti F, Morelli C, Micarelli A, Ridolfi M, Salvucci R (1991b) Carta geologica dei bacini della Laga e del Cellino e dei rilievi carbonatici circostanti (Marche meridionali, Lazio nord-orientale, Abruzzo settentrionale). Studi Geol Camerti 1991(2):1

    Google Scholar 

  • Chávez-García FJ, Faccioli E (2000) Complex site effects and building codes: making the leap. J. Seismol. 4:23–40

    Article  Google Scholar 

  • Chiaraluce L, Di Stefano R, Tinti E, Scognamiglio L, Michele M, Casarotti E, Lombardi A (2017) The 2016 central Italy seismic sequence: a first look at the mainshocks, aftershocks, and source models. Seismol Res Lett 88(3):757–771

    Article  Google Scholar 

  • Chiarini E, La Posta E, Cifelli F, D’Ambrogi C, Eulilli V, Ferri F, Marino M, Mattei M, Puzzilli LM (2014) A multidisciplinary approach to the study of the Montereale Basin (Central Apennines, Italy). Rend. Fis. Acc. Lincei 25(2):177–188. https://doi.org/10.1080/16445647.2016.1239229

    Article  Google Scholar 

  • Civico R, Pucci S, Villani F, Pizzimenti L, De Martini PM, Nappi R, The Open Emergeo Working Group (2018) Surface Ruptures following the 30 October 2016 Mw 6.5 Norcia Earthquake, Central Italy. J Maps 14(2):151–160. https://doi.org/10.1080/17445647.2018.1441756

    Article  Google Scholar 

  • Coltorti M, Farabollini P, Gentili B, Pambianchi G (1996) Geomorphological evidence for anti-Apennine faults in the Umbro-Marchean Apennines and in the peri-Adriatic basin, Italy. Geomorphology 15:33–34

    Article  Google Scholar 

  • Compagnoni B, Galluzzo F, Bonomo R, Capotorti F, D’Ambrogi C, Di Stefano R, Graziano R, Martarelli L, Pampaloni ML, Pantaloni M, Ricci V, Tacchia D, Masella G, Pannuti V, Ventura R, Vitale V (2011) Carta Geologica d’Italia in scala 1:1.000.000. Servizio Geologico d’Italia. S.EL.CA., Firenze

    Google Scholar 

  • Cosentino D, Cipollari P, Marsili P, Scrocca D (2010) Geology of the central Apennines: a regional review. J Virtual Explor 36(12):1

    Google Scholar 

  • Cosentino D, Asti R, Nocentini M, Gliozzi E, Kotsakis T, Mattei M, Esu D, Spadi M, Tallini M, Cifelli F, Pennacchioni M, Cavuoto G, Di Fiore V (2017) New insights into the onset and evolution of the central Apennine extensional intermontane basins on the tectonically active L’Aquila Basin (central Italy). GSA Bull 129(9–10):1314–1336. https://doi.org/10.1130/B31679.1

    Article  Google Scholar 

  • Foti S, Parolai S, Albarello D, Picozzi M (2011) Application of Surface wave methods for seismic site characterization. Surv Geophys 32(6):777–825. https://doi.org/10.1007/s10712-011-9134-2

    Article  Google Scholar 

  • Ghisetti F, Vezzani L (1991) Thrust belt development in the Central Apennines (Italy): northward polarity of thrusting and out-of-sequence deformations in the Gran Sasso chain. Tectonics 10:904–919

    Article  Google Scholar 

  • Hudson M, Idriss IM, Beikae M (1994) QUAD4M: a computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California Davis, Davis California

  • Kottke AM, Rathje EM (2008) Technical manual for Strata, PEER Report 2008/10. Pacifc Earthquake Engineering Research Center College of Engineering, University of California, Berkeley

    Google Scholar 

  • Madiai C, Facciorusso J, Gargini E (2017) Numerical modeling of seismic site effects in a shallow alluvial basin of the Northern Apennines (Italy). Bull Seismol Soc Am 107(5):2094–2105. https://doi.org/10.1785/0120160293

    Article  Google Scholar 

  • Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface: railway Technical Research Institute. Q Rep 30(1):1

    Google Scholar 

  • Nocentini M, Asti R, Cosentino D, Durante F, Gliozzi E, Macerola L, Tallini M (2017) Plio-quaternary geology of L’Aquila—Scoppito Basin (Central Italy). J Maps 13(2):563–574. https://doi.org/10.1080/17445647.2017.1340910

    Article  Google Scholar 

  • Nocentini M, Cosentino D, Spadi M, Tallini M (2018) Plio-quaternary geology of the Paganica-San Demetrio-Castelnuovo basin (Central Italy). J Maps 14(2):411–420. https://doi.org/10.1080/17445647.2018.1481774

    Article  Google Scholar 

  • Pagliaroli A (2018) Key issues in Seismic Microzonation studies: lessons from recent experiences in Italy. Rivista italiana di Geotacnica. https://doi.org/10.19199/2018.1.0557-1405.05

    Article  Google Scholar 

  • Pergalani F, Pagliaroli A, Bourdeau C, Compagnoni M, Lenti L, Lualdi M, Madiai C, Martino S, Razzano R, Varone C, Verrubbi V (2018) Seismic microzoning map: approaches, results and applications after the 2016–2017 Central Italy seismic sequence. Bull Earthq Eng. https://doi.org/10.1007/s10518-019-00640-1(This issue)

    Article  Google Scholar 

  • Pierantoni PP, Deiana G, Galdenzi S (2013) Stratigraphic and structural features of the Sibillini Mountains (Umbria-Marche Apennines, Italy). Ital J Geosci Boll Soc Geol It 132(3):497–520. https://doi.org/10.3301/IJG.2013.08

    Article  Google Scholar 

  • Pizzi A, Di Domenica A, Gallovic F, Luzi L, Puglia R (2017) Fault segmentation as constraint to the occurrence of the main shocks of the 2016 central Italy seismic sequence. Tectonics 36(11):2370–2387. https://doi.org/10.1002/2017TC004652

    Article  Google Scholar 

  • Rollins KM, Evans MD, Diehl NB, Daily WDI (1998) Shear modulus and damping relationships for gravels. J Geotech Geoenviron Eng 1:396–1218

    Article  Google Scholar 

  • Sanchez-Sesma FJ, Palencia VJ, Luzon F (2002) Estimation of local site effects during earthquakes: an overview. J Earthq Technol 39:167–193

    Google Scholar 

  • Villani F, Civico R, Pucci S, Pizzimenti L, Nappi R, De Martini PM (2018) A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy. Sci Data. https://doi.org/10.1038/sdata.2018.49

    Article  Google Scholar 

  • WORKING GROUP MS (2008) Indirizzi e criteri per la microzonazione sismica. Conferenza delle Regioni e delle Province Autonome-Dipartimento della Protezione Civile. English version available at http://www.protezionecivile.gov.it/httpdocs/cms/attach_extra/GuidelinesForSeismicMicrozonation.pdf

  • WORKING GROUP MS (2015). Microzonazione Sismica. Standard di rappresentazione e archiviazione informatica. versione 4.0b. http://www.protezionecivile.gov.it/httpdocs/cms/attach_extra/GuidelinesForSeismicMicrozonation.pdf

  • WORKING GROUP CentroMS (2017) Protocolli di acquisizione dati ed elaborazione relativi alle attività di Microzonazione di Livello III nei 140 Comuni di cui all’Ordinanza n. 24 del 12 maggio 2017 della Presidenza del Consiglio dei Ministri. http://www.centrodimicrozonazionesismica.it

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amanti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amanti, M., Muraro, C., Roma, M. et al. Geological and geotechnical models definition for 3rd level seismic microzonation studies in Central Italy. Bull Earthquake Eng 18, 5441–5473 (2020). https://doi.org/10.1007/s10518-020-00843-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-020-00843-x

Keywords

Navigation