Skip to main content

Advertisement

Log in

Application of Surface-Wave Methods for Seismic Site Characterization

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Surface-wave dispersion analysis is widely used in geophysics to infer a shear wave velocity model of the subsoil for a wide variety of applications. A shear-wave velocity model is obtained from the solution of an inverse problem based on the surface wave dispersive propagation in vertically heterogeneous media. The analysis can be based either on active source measurements or on seismic noise recordings. This paper discusses the most typical choices for collection and interpretation of experimental data, providing a state of the art on the different steps involved in surface wave surveys. In particular, the different strategies for processing experimental data and to solve the inverse problem are presented, along with their advantages and disadvantages. Also, some issues related to the characteristics of passive surface wave data and their use in H/V spectral ratio technique are discussed as additional information to be used independently or in conjunction with dispersion analysis. Finally, some recommendations for the use of surface wave methods are presented, while also outlining future trends in the research of this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst 35:415–456

    Google Scholar 

  • Aki K (1965) A note on the use of microseisms in determining the shallow structure of the Earth’s crust. Geophysics 30:665–666

    Google Scholar 

  • Aki K, Richards PG (1980) Quantitative seismology: theory and methods, vol 2. Freeman, S. Francisco

    Google Scholar 

  • Albarello D, Baliva F (2009) In situ estimates of material damping from environmental noise measurements. In: Mucciarelli M, Herak M, Cassidy J (eds) Increasing seismic safety by combining engineering technologies and seismological data (NATO Science for Peace and Security Series C: Environmental). Springer, Berlin, XVIII, 382 pp., ISBN: 978-1-4020-9194-0, 73-84

  • Albarello D, Lunedei E (2010) Alternative interpretations of Horizontal to Vertical Spectral Ratios of ambient vibrations: new insights from theoretical modeling. Bull Earthq Eng 8(3):519–534. doi:10.1007/s10518-009-9110-0

    Google Scholar 

  • Arai H, Tokimatsu K (2000) Effects of Rayleigh and Love waves on microtremor H/V spectra, paper presented at 12th World Conference on Earthquake Engineering. N. Z. Soc. for Earthquake Eng, Auckland

    Google Scholar 

  • Arai H, Tokimatsu K (2004) S-wave velocity profiling by inversion of microtremor H/V spectrum. Bull Seism Soc Am 94:53–63

    Google Scholar 

  • Arai H, Tokimatsu K (2005) S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bull Seism Soc Am 95:1766–1778

    Google Scholar 

  • Asten MW (2006) On bias and noise in passive seismic data from finite circular array data processed using SPAC method. Geophysics 71:V153–V162. doi:10.1190/1.2345054

    Google Scholar 

  • Auken E, Christiansen AV (2004) Layered and laterally constrained 2D inversion of resistivity data. Geophysics 69:752–761

    Google Scholar 

  • Badsar SA, Schevenels M, Haegeman W, Degrande G (2010) Determination of the material damping ratio in the soil from SASW tests using the half-power bandwidth method. Geophys J Int 182(3):1493–1508

    Google Scholar 

  • Bakulin A, Calvert R (2004) Virtual source: new method for imaging and 4D below complex overburden. In: Proceedings of 74th annual international meeting (expanded abstracts), Society of Exploration Geophysicists, pp 2477–2480

  • Bakulin A, Calvert R (2006) The virtual source method: theory and case study. Geophysics 71:S1139–S1150

    Google Scholar 

  • Bard PY (1998) Microtremor measurement: a tool for site e_ect estimation? In: Second international symposium on the effects of the surface geology on seismic motion ESG98, Japan

  • Beaty KS, Schmitt DR, Sacchi M (2002) Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure. Geophys J Int 151:622–631

    Google Scholar 

  • Ben-Menahem A, Singh SJ (2000) Seismic waves and sources. Dover Publications Inc., New York, p 1102

    Google Scholar 

  • Birtill JW, Whiteway FE (1965) The application of phased arrays to the analysis of seismic body waves. Philos Trans R Soc Lond A 258:421–493

    Google Scholar 

  • Bohlen T, Kugler S, Klein G, Theilen F (2004) 1.5-D Inversion of lateral variation of Scholte wave dispersion. Geophysics 69:330–344

    Google Scholar 

  • Buchen PW, Ben-Hador R (1996) Free-mode surface-wave computations. Geophys J Int 124:869–887

    Google Scholar 

  • Campillo M, Paul A (2003) Long-range correlations in the seismic coda. Science 299:547–549

    Google Scholar 

  • Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 57(8):1408–1418

    Google Scholar 

  • CEN (2004) EN 1998-1 Eurocode 8: Design of structures for earthquake resistance—Part 1: general rules, seismic actions and rules for buildings. Brussels.

  • Chavez-Garcıa FJ, Luzon F (2005) On the correlation of seismic microtremors. J Geophys Res 110:B11313. doi:10.1029/2005JB003671

    Google Scholar 

  • Chavez-Garcıa FJ, Rodrıguez M (2007) The correlation of microtremors: empirical limits and relations between results in frequency and time domains. Geophys J Int 171:657–664

    Google Scholar 

  • Cho KH, Herrmann RB, Ammon CJ, Lee K (2007) Imaging the upper crust of the Korean Peninsula by surface-wave tomography. Bull Seism Soc Am. 97:198–207. doi:10.1785/0120060096.

    Google Scholar 

  • Comina C, Foti S, Boiero D, Socco LV (2011) Reliability of VS,30 evaluation from surface waves tests. J Geotech Geoenviron Eng ASCE 137(6). doi:10.1061/(ASCE)GT.1943-5606.0000452

  • Cox BR, Beekman AN (2010) Intra-method variability in ReMi dispersion measurements and Vs Estimates at shallow bedrock sites. J Geotechn Geoenv Eng ASCE 137(4):354–362

    Google Scholar 

  • Curtis A, Gerstoft P, Sato H, Snieder R, Wapenaar K (2006) Seismic interferometry—turning noise into signal. Leading Edge 25:1082–1092

    Google Scholar 

  • D’Amico V, Picozzi M, Albarello D, Naso G, Tropenscovino S (2004) Quick estimate of soft sediments thickness from ambient noise horizontal to vertical spectral ratios: a case study in southern Italy”. J Earthq Eng 8(6):895–908

    Google Scholar 

  • D’Amico V, Picozzi M, Baliva F, Albarello D (2008) Ambient noise measurements for preliminary site-effects characterization in the urban area of Florence. Bull Seism Soc Am 98(3):1373–1388. doi:10.1785/0120070231

    Google Scholar 

  • Degrande G, Badsar SA, Lombaert G, Schevenels M, Teughels A (2008) Application of the coupled local minimizers method to the optimization problem in the spectral analysis of surface wave method. J Geotech Geoenviron Eng 134(10):1541–1553

    Google Scholar 

  • Delgado J, Lopez Casado C, Estevez AC, Giner J, Cuenca A, Molina S (2000a) Mapping soft soils in the Segura river valley (SE Spain): a case study of microtremors as an exploration tool. J Appl Geophys 45:19–32

    Google Scholar 

  • Delgado J, Lopez Casado C, Giner J, Estevez A, Cuenca A, Molina S (2000b) Microtremors as a geophysical exploration tool: applications and limitations. Pure Appl Geophys 157:1445–1462

    Google Scholar 

  • Dong S, He R, Schuster G (2006) Interferometric prediction and leastsquares subtraction of surface waves. In: Proceedings of 76th annual international meeting (expanded abstracts), Society of Exploration Geophysicists, pp 2783–2786

  • Douglas A (2002) Seismometer arrays—their use in earthquake and test ban seismology. In: Jennings P, Kanamori H, Lee W (eds) Handbook of earthquake and engineering seismology. Academic, San Diego, pp 357–367

    Google Scholar 

  • Dziewonski AM, Hales AL (1972) Numerical analysis of dispersed seismic waves. In: Bolt BA (ed) Methods in computational physics, vol 11. Seismology: Surface waves and Earth Oscillations. Ademic Press. New York, pp 39–85

  • Dziewonski AM, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. Bull Seism Soc Am 59:427–444

    Google Scholar 

  • Fäh D, Kind F, Giardini D (2001) A theoretical investigation of average H/V ratios. Geophys J Int 145:535–549

    Google Scholar 

  • Fäh D, Kind F, Giardini D (2003) Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. J Seismol 7:449–467

    Google Scholar 

  • Field EH, Jacob K (1993) The theoretical response of sedimentary layers to ambient seismic noise. Geophys Res Lett 20(24):2925–2928

    Google Scholar 

  • Foti S (2000) Multistation methods for geotechnical characterization using surface waves. PhD dissertation, Politecnico di Torino, Italy

  • Foti S (2003) Small strain stiffness and damping ratio of Pisa Clay from surface wave tests. Geotechnique 53(5):455–461

    Google Scholar 

  • Foti S (2004) Using transfer function for estimating dissipative properties of soils from surface wave data. Near Surface Geophysics. EAGE 2(4):231–240

    Google Scholar 

  • Foti S (2005) Surface Wave testing for geotechnical characterization. In: Lai CG, Wilmanski K (eds) Surface waves in geomechanics: direct and inverse modelling for soils and rocks, CISM Series, Number 481. Springer, Wien, pp 47–71

  • Foti S, Lancellotta R, Sambuelli L, Socco LV (2000) Notes on fk analysis of surface waves. Ann Geofisica 43(6):1199–1210

    Google Scholar 

  • Foti S, Sambuelli L, Socco LV, Strobbia C (2003) Experiments of joint acquisition of seismic refraction and surface wave data. Near Surface Geophysics. EAGE 119–129

  • Foti S, Comina C, Boiero D, Socco LV (2009) Non uniqueness in surface wave inversion and consequences on seismic site response analyses. Soil Dyn Earthq Eng 29(6):982–993

    Google Scholar 

  • Frosch RA, Green PE (1966) The concept of the large aperture seismic array. Proc R Soc Lond A 290:368–384

    Google Scholar 

  • Gabriels P, Snieder R, Nolet G (1987) In situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh waves. Geophys Prospect 35:187–196

    Google Scholar 

  • Ganji V, Gukunski N, Nazarian S (1998) Automated inversion procedure for spectral analysis of surface waves. J Geotech Geoenviron Eng ASCE 124:757–770

    Google Scholar 

  • García-Jerez A, Luzón F, Navarro M (2008) An alternative method for calculation of Rayleigh and Love wave phase velocities by using three-component records on a single circular array without a central station. Geophys J Int 173(3):844–858. doi:10.1111/j.1365-246X.2008.03756.x

    Google Scholar 

  • Gerstoft P, Sabra KG, Roux P, Kuperman WA, Fehler MC (2006) Green’s functions extraction and surface-wave tomography from microseisms in southern California. Geophysics 71:23–32

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search. Optimization and machine learning. Addison-Wesley, Reading

    Google Scholar 

  • Gorbatikov AV, Tsukanov AA (2011) Simulation of the Rayleigh wave in the proximity of the scattering velocity heterogeneities. Exploring the capabilities of the microseismic sounding method. Izvestiya Phys Solid Earth 47(4):354–369

    Google Scholar 

  • Gorbatikov AV, Stepanova MYu, Korablev GE (2008) Microseismic field affected by local geological heterogeneities and microseismic sounding of the medium. Fiz Zemli 7:66–84 [Izv. Phys. Earth (Engl.Transl.), 2008, vol. 44, no. 7, pp 577–592].

  • Grandjean G, Bitri A (2006) 2 M-SASW: multifold multichannel seismic inversion of local dispersion of Rayleigh waves in laterally heterogeneous subsurfaces: application to the Super-Sauze earthflow, France. Near Surface Geophys 4:367–375

    Google Scholar 

  • Halliday DF, Curtis A (2008a) Seismic interferometry, surface waves, and source distribution. Geophys J Int. doi:10.1111/j.1365- 246X.2008.03918.x

  • Halliday DF, Curtis A (2008b) Seismic interferometry of scattered surface waves in attenuative media (submitted)

  • Halliday DF, Curtis A, Robertsson JOA, van Manen D-J (2007) Interferometric surface-wave isolation and removal. Geophysics 72:A67–A73

    Google Scholar 

  • Halliday DF, Curtis A, Kragh E (2008) Seismic surface waves in a suburban environment—active and passive interferometric methods. Leading Edge 27:210–218

    Google Scholar 

  • Haney MM, Decker KT, Bradford JH (2010) Permittivity structure derived from group velocities of guided GPR pulses. In: Miller RD, Bradford JH, Holliger K (eds) Advances in near surface seismology and ground-penetrating radar, society of exploration geophysicists, Tulsa, OK, pp 167–184

  • Harkrider DG (1964) Surface waves in multi-layered elastic media. I Rayleigh and Love waves from buried sources in a multilayered elastic half space. Bull Seism Soc Am 54:627–679

    Google Scholar 

  • Herrmann RB (1987) Computer programs in seismology, vol IV. St. Louis University, MO, USA

    Google Scholar 

  • Hisada Y (1994) An efficient method for computing Green’s functions for a layered halfspace with sources and receivers at close depths. Bull Seism Soc Am 84:1456–1472

    Google Scholar 

  • Hobiger M, Bard P-Y, Cornou C, Le Bihan N (2009) Single station determination of rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophys Res Lett 36:14. doi:10.1029/2009GL038863

    Google Scholar 

  • Horike M (1985) Inversion of phase velocity of long period micro tremors to the S-wavevelocity structure down to the basement in urbanized areas. J Phys Earth 33:59–96

    Google Scholar 

  • Hough SE, Seeber L, Rovelli A, Malagnini L, DeCesare A, Selvaggi G, Lerner-Lam A (1992) Ambient noise and weak motion excitation of sediment resonances: results from the Tiber Valley, Italy. Bull Seism Soc Am 82:1186–1205

    Google Scholar 

  • Ibs-von Seht M, Wohlenberg J (1999) Microtremor measurements used to map thickness of soft sediments. Bull Seism Soc Am 89:250–259

    Google Scholar 

  • Ivanov J, Miller RD, Xia J, Steeples D, Park CB (2006) Joint analysis of refractions with surface waves: an inverse solution to the refraction-traveltime problem. Geophysics 71(6):R131–R138

    Google Scholar 

  • Jones RB (1958) In situ measurement of the dynamic properties of soil by vibration methods. Geotechnique 8(1):1–21

    Google Scholar 

  • Kárason H, van der Hilst RD (2001) Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff). J Geophys Res 106:6569–6587

    Google Scholar 

  • Karray M, Lefebvre G (2000) Identification and isolation of multiple modes in Rayleigh wave testing methods. ASCE Proceedings Use of Geophysical Methods in Construction, Geo Denver, pp 80–94

    Google Scholar 

  • Kind F, Fäh D, Giardini D (2005) Array measurements of S-wave velocities from ambient vibrations. Geophys J Int 160:114–126

    Google Scholar 

  • Krűger F, Baumann M, Scherbaum F, Weber M (2001) Mid mantle scatterers near the Mariana slab detected with a double array method. Geophys Res Lett 28:667–670

    Google Scholar 

  • Kværna T (1989) On exploitation of small-aperture NORESS type arrays for enhanced Pwave detectability. Bull Seismol Soc Am 79:888–900

    Google Scholar 

  • Lacoss RT, Kelly EJ, Toksöz MN (1969) Estimation of seismic noise structure using arrays. Geophysics 34:21–38

    Google Scholar 

  • Lai CG (1998) Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization. PhD Diss., Georgia Institute of Technology, Atlanta. Georgia, USA

    Google Scholar 

  • Lai CG, Rix GJ (2002) Solution of the Rayleigh eigenproblem in viscoelastic media. Bull Seism Soc Am 92(6):2297–2309

    Google Scholar 

  • Lai CG, Wilmanski K (eds) (2005) Surface waves in geomechnics: direct and inverse modelling for soils and rocks. Springer, Wien, p 385

    Google Scholar 

  • Lai CG, Rix GJ, Foti S, Roma V (2002) Simultaneous measurement and inversion of surface wave dispersion and attenuation curves. Soil Dyn Earthq Eng 22(9–12):923–930

    Google Scholar 

  • Lermo J, Chavez-Garcia FJ (1993) Site effect evaluation using spectral ratios with only one station. Bull Seism Soc Am 85(5):1574–1594

    Google Scholar 

  • Lermo J, Chavez-Garcia FJ (1994) Are microtremors useful in site response evaluation? Bull Seism Soc Am 84(135):1364

    Google Scholar 

  • Levshin A, Ratnikova L, Berger J (1992) Peculiarities of surface-wave propagation across central Eurasia. Bull Seism Soc Am 82:2464–2493

    Google Scholar 

  • Lin F-C, Ritwoller MH, Townend J, Bannister S, Savage MK (2007) Ambient noise Rayleigh wave tomography of New Zealand. Geophys J Int 170:649–666. doi:10.1111/j.1365-246X.2007.03414x

    Google Scholar 

  • Long LT, Kocaoglu AH (2001) Surface-wave group-velocity tomography for shallow structures. J Environ Eng Geophys Publ, pp 71–81

  • Louie JN (2001) Faster, better: shear-wave velocity to 100 meters depth from refraction

  • Lunedei E, Albarello D (2009) On the seismic noise wave field in a weakly dissipative layered Earth. Geophys J Int. doi:10.1111/j.1365-246X.2008.04062.x

  • Lunedei E, Albarello D (2010) Theoretical HVSR from the full wave field modelling of ambient vibrations in a weakly dissipative layered Earth. Geophys J Int 181:1093–1108. doi:10.1111/j.1365-246X.2010.04560.x

  • Malagnini L, Rovelli A, Hough SE, Seeber L (1993) Site amplification estimates in the Garigliano Valley, Central Italy, based on dense array measurements of ambient noise. Bull Seism Soc Am 83:1744–1755

    Google Scholar 

  • Malagnini L, Herrmann RB, Biella G, de Frando R (1995) Rayleigh waves in quaternary alluvium from explosive sources: determination of shear-wave velocity and Q structure. Bull Seism Soc Am 85:900–922

    Google Scholar 

  • Malagnini L, Hermann RB, Mercuri A, Opice S, Biella G, De Franco R (1997) Shear-wave velocity structure of sediments from the inversion of explosion-induced Rayleigh waves: comparison with crosshole measurements. Bull Seism Soc Am 87:1413–1421

    Google Scholar 

  • Malischewsky PG, Scherbaum F (2004) Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves. Wave Motion 40:57–67

    Google Scholar 

  • Maraschini M, Foti S (2010) A Monte Carlo multimodal inversion of surface waves. Geophys J Int 182(3):1557–1566

    Google Scholar 

  • Maraschini M, Ernst F, Foti S, Socco V (2010) A new misfit function for multimodal inversion of surface waves. Geophysics 75(4):31–43

    Google Scholar 

  • McMechan GA, Yedlin MJ (1981) Analysis of dispersive waves by wave field transformation. Geophysics 46:869–874

    Google Scholar 

  • Meier T, Malischewsky PG, Neunhoefer H (1997) Reflection and transmission of surface waves at a vertical discontinuity and imaging of lateral heterogeneity using reflected fundamental Rayleigh waves. Bull Seismol Soc Am 87(6):1648–1661

    Google Scholar 

  • Menke W (1989) Geophysical data analysis: discrete inverse theory (rev. edn). Academic, San Diego

    Google Scholar 

  • Mosegaard K, Sambridge M (2002) Monte Carlo analysis of inverse problems. Inverse Prob 18:R29–R54

    Google Scholar 

  • Moss RES (2008) Quantifying measurement uncertainty of thirty-meter shear-wave velocity. Bull Seism Soc Am 98(3):1399–1411

    Google Scholar 

  • Mucciarelli M (1998) Reliability and applicability of Nakamura’s technique using microtremors: an experimental approach. J Earthq Eng 2:625–638

    Google Scholar 

  • Mulargia F, Castellaro S (2008) Passive imaging in nondiffuse acousticwavefields. Phys Rev Lett 100:218501

    Google Scholar 

  • Nakamura Y (1989) A method for dynamic characteristics estimations of subsurface using microtremors on the ground surface. Q Rept RTRI Jpn 30:25–33

    Google Scholar 

  • Nazarian S, Desai MR (1993) Automated surface wave method: field testing. J Geotech Eng ASCE 119(7):1094–1111

    Google Scholar 

  • Nazarian S, Stokoe II KH (1984) In situ shear wave velocities from spectral analysis of surface waves. In: Proceedings of the 8th conference on earthquake engineering, S. Francisco, vol. 3. Prentice-Hall, pp 31–38

  • Neducza B (2007) Stacking of surface waves. Geophysics 72(2):V51–V58

    Google Scholar 

  • NEHRP (2000) NEHRP recommended provisions for seismic regulations for new buildings and other structures, Part 1: Provisions, FEMA 368. Federal Emergency Management Agency, Washington, DC

    Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comp J 7:308–313

    Google Scholar 

  • Nogoshi M, Igarashi T (1970) On the propagation characteristics of microtremors. J Seism Soc Jpn 23:264–280 (in Japanese with English abstract)

    Google Scholar 

  • Nogoshi M, Igarashi T (1971) On the amplitude characteristics of microtremor (Part 2). J Seism Soc Jpn 24:26–40

    Google Scholar 

  • O’Neill A (2004) Full waveform reflectivity for inversion of surface wave dispersion in shallow site investigations. In: Viana da Fonseca & Mayne (eds) Proceedings of ISC-2 on geotechnical and geophysical site characterization, Millpress, Rotterdam, pp 547–554

  • Ohori M, Nobata A, Wakamatsu K (2002) A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor analysis. Bull Seism Soc Am 92:2323–2332

    Google Scholar 

  • Ohrnberger M, Vollmer D, Scherbaum F (2006) WARAN-a mobile wireless array analysis system for in-field ambient vibration dispersion curve estimation. In: Proceedings of the 1st ECEES, Geneve, Switzerland

  • Okada H (2003) The microtremor survey method. Geophys Monograph Series, SEG

    Google Scholar 

  • Park CB, Miller RD, Xia J (1999) Multichannel analysis of surface waves. Geophysics 64:800–808

    Google Scholar 

  • Parolai S, Bormann P, Milkereit C (2001) Assessment of the natural frequency of the sedimentary cover in the Cologne area (Germany) using noise measurements. J Earthq Eng 5:541–564

    Google Scholar 

  • Parolai S, Picozzi M, Richwalski SM, Milkereit C (2005) Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophys Res Lett 32. doi:10.1029/2004GL021115

  • Parolai S, Richwalski SM, Milkereit C, Faeh D (2006) S-wave velocity profile for earthquake engineering purposes for the Cologne area (Germany). Bull Earthq Eng 65–94. doi:10.1007/s10518-005-5758-2

  • Parolai S, Mucciarelli M, Gallipoli MR, Richwalski SM, Strollo S (2007) Comparison of empirical and numerical site responses at the Tito Test Site, Southern Italy. Bull Seism Soc Am 97:1413–1431

    Google Scholar 

  • Pedersen HA, Mars JI, Amblard P (2003) Improving surface-wave group velocity measurements by Energy reassignment. Geophysics 68:677–684

    Google Scholar 

  • Picozzi M, Albarello D (2007) Combining genetic and linearized algorithms for a two-step joint inversion of Rayleigh wave dispersion and H/V spectral ratio curves. Geophys J Int 169:189–200

    Google Scholar 

  • Picozzi M, Parolai S, Albarello D (2005a) Statistical analysis of noise horizontal to-vertical spectral ratios (HVSR). Bull Seism Soc Am 95:1779–1786

    Google Scholar 

  • Picozzi M, Parolai S, Richwalski SM (2005b) Joint inversion of H/V ratios and dispersion curves from seismic noise: estimating the S-wave velocity of bedrock. Geophys Res Lett 32(11). doi:10.1029/2005GL022878

  • Picozzi M, Parolai S, Bindi D, Strollo A (2008a) Characterization of shallow geology by high-frequency seismic noise tomography. Geophys J Int 176(1):164–174

    Google Scholar 

  • Picozzi M, Strollo A, Parolai S, Durukal E, Özel O, Karabulut S, Zschau J, Erdik M (2008b) Site characterization by seismic noise in Istanbul, Turkey. Soil Dyn Earthq Eng 29(2009):469–482. doi:10.1016/j.soildyn.2008.05.007

    Google Scholar 

  • Picozzi M, Milkereit C, Parolai S, Jaeckel K-H, Veit I, Fischer J, Zschau J (2010a) GFZ wireless seismic array (GFZ-WISE), a wireless mesh network of seismic sensors: new perspectives for seismic noise array investigations and site monitoring. Sensors 10:3280–3304

    Google Scholar 

  • Picozzi M, Parolai S, Bindi D (2010b) De-blurring of frequency-wavenumber images from small-size seismic arrays. Geophys J Int 181(1):357–368. doi:10.1111/j.1365-246X.2009.04471.x

    Google Scholar 

  • Poggiagliolmi E, Berkhout AJ, Boone MM (1982) Phase unwrapping possibilities and limitations. Geophys Prospect 30:281–291

    Google Scholar 

  • Press F (1968) Earth models obtained by Monte Carlo inversion. J Geophys Res 73:5223–5234

    Google Scholar 

  • Press WH, Teulkolsky SA, Vetterling WT, Flannery BP (1986) Numerical Recipes in Fortran 77. The Art of Scientific Computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Renalier F, Jongmans D, Campillo M, Bard PY (2010) Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation. J Geophys Res 115:F03032. doi:10.1029/2009JF001538

    Google Scholar 

  • Richwalski S, Picozzi M, Parolai S, Milkereit C, Baliva F, Albarello D, Row-Chowdhury K, van der Meer H, Zschau J (2007) Rayleight wave dispersion curves from seismological and engineering-geotechnical methods: a comparison at the Bornheim test site (Germany). J Geophys Eng 4:349–361

    Google Scholar 

  • Ritter JRR, Jordan M, Christensen U, Achauer U (2001) A mantle plume below the Eifel volcanic fields, Germany, Earth Planet. Sci Lett 186:7–14

    Google Scholar 

  • Rix GJ, Lai CG, Spang AW (2000) In situ measurements of damping ratio using surface waves. J Geotech Geoenviron Eng ASCE 126:472–480

    Google Scholar 

  • Roesset JM, Chang DW, Stokoe KH (1991) Comparison of 2-D and 3-D models for analysis of surface wave tests. In: Proceedings of the 5th international conference on soil dynamics and earthquake engineering, Kalsruhe, vol 1, pp 111–126

  • Rost S, Thomas C (2002) Array Seismology: Methods and Applications. Rev Geophys 40:3

    Google Scholar 

  • Sabra KG, Gerstoft P, Roux P, Kuperman WA, Fehler MC (2005) Surfacewave tomography frommicroseisms in Southern California. Geophys Res Lett 32:L14311. doi:10.1029/2005GL023155

    Google Scholar 

  • Sambridge M (1999a) Geophysical inversion with a Neighbourhood algorithm-I. Searching parameter space. Geophys J Int 138:479–494

    Google Scholar 

  • Sambridge M (1999b) Geophysical Inversion with a Neighbourhood Algorithm—II. Appraising the ensemble. Geophys J Int 138:727–746

    Google Scholar 

  • Sànchez-Salinero I (1987) Analytical investigation of seismic methods used for engineering applications. PhD Diss., Un. of Texas at Austin

  • Santamarina JC, Fratta D (1998) Introduction to discrete signals and inverse problems in civil engineering. Asce Press, Reston

    Google Scholar 

  • Scherbaum F, Hinzen K-G, Ohrnberger M (2003) Determination of shallow shearwave velocity profiles in Cologne, Germany area using ambient vibrations. Geophys J Int 152:597–612

    Google Scholar 

  • Schnabel PB, Lysmer J, Seed HB (1972) SHAKE: a computer program for earthquake response analysis of horizontally layered sites. Rep. No. EERC/72–12, Earthquake Engineering Research Center. University of California, Berkeley

    Google Scholar 

  • Schuster GT (2001) Theory of daylight/interferometric imaging: tutorial. In: Proceedings of 63rd meeting, European association of geoscientists and engineers, session: A32 (extended Abstracts)

  • Schuster GT, Yu J, Sheng J, Rickett J (2004) Interferometric/daylight seismic imaging. Geophys J Int 157:838–852

    Google Scholar 

  • SESAME (2003) Final report on measurements guidelines, LGIT Grenoble, CETE Nice,WP02, H/V technique:experimental conditions, http://sesame-fp5.obs.ujf-grenoble.fr/Delivrables/D08-02_Texte.pdf

  • Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31:L07614. doi:10.1029/2004GL019491

    Google Scholar 

  • Shapiro NM, Campillo M, Stehly L, Ritzwoller M (2005) High resolution surface wave tomography from ambient seismic noise. Science 307:1615–1618

    Google Scholar 

  • Snieder R (2002) Scattering of surface waves. In: Pike R, Sabatier P (eds) Scattering and inverse scattering in pure and applied science. Academic Press, San Diego, pp 562–577

  • Snieder R (2004) Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase. Phys Rev E 69. doi:10.1103/PhysRevE.69.046610

  • Socco LV, Boiero D (2008) Improved Monte Carlo inversion of surface wave data. Geophys Prospect 56(3):357–371

    Google Scholar 

  • Socco LV, Strobbia C (2004) Surface wave methods for near-surface characterisation: a tutorial. Near Surface Geophys 2(4):165–185

    Google Scholar 

  • Socco LV, Boiero D, Foti S, Wìsén R (2009) Laterally constrained inversion of ground roll from seismic reflection records. Geophys SEG (in press)

  • Socco LV, Boiero D, Foti S, Piatti C (2010) Chapter 4: Advances in surface wave and body wave integration. In: Miller RD, Bradford JH, Holliger K (eds) Advances in near surface seismology and ground-penetrating radar. Society of Exploration Geophysicists, Tulsa, pp 37–54

  • Socco LV, Foti S, Boiero D (2010b) Surface wave analysis for building near surface velocity models: established approaches and new perspectives. Geophys SEG 75:A83–A102

    Google Scholar 

  • Stephenson WJ, Louie JN, Pullammanappallil S, Williams RA, Odum JK (2005) Blind Shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: implication for earthquake ground motion assessment. Bull Seism Soc Am 95:2506–2516

    Google Scholar 

  • Stich D, Danecek P, Morelli A, Tromp J (2009) Imaging lateral heterogeneity in the northern Apennines from time reversal of reflected surface waves. Geophys J Int 177:543–554

    Google Scholar 

  • Stokoe II KH, Wright SG, Bay JA, Roesset JM (1994) Characterization of geotechnical sites by SASW method. In: Woods RD (ed) Geophysical Characterization of Sites, pp 15–25

  • Strobbia C, Cassiani G (2007) Multilayer ground-penetrating radar guided waves in shallow soil layers for estimating soil water content. Geophysics 72(4):J17–J29

    Google Scholar 

  • Strobbia C, Foti S (2006) Multi-offset phase analysis of surface wave data (MOPA). J Appl Geophys 59:300–313

    Google Scholar 

  • Strollo A, Parolai S, Jäckel K-H, Marzorati S, Bindi D (2008) Suitability of short-period sensors for retreiving reliable H/V peaks for frequencies less than 1 Hz. Bull Seism Soc Am 98(2):671–681

    Google Scholar 

  • Szelwis R, Behle A (1987) Shallow shear-wave velocity estimation from multimodal Rayleigh waves. In: Danbom S, Domenico SN (eds) Shear-wave exploration. Society of Exploration Geophysics, Dallas, pp 214–226

    Google Scholar 

  • Tada T, Cho I, Shinozaki Y (2006) Atwo- radius circular array method: inferring phase velocity of Love waves using microtremor records. Geophys Res Lett 33:L10303. doi:10.1029/2006GL025722

  • Tanimoto T, Alvizuri C (2006) Inversion of the HZ ratio of microsisms fopr S-wave velocity in the crust. Geophys J Int 165:323–335

    Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Siam, Philadelphia, pp 1–55

  • Thorson JR, Claerbout JF (1985) Velocity-stack and slant-stack stochastic inversion. Geophysics 50:2727–2741

    Google Scholar 

  • Tian G, Steeples DW, Xia J, Spikes KT (2003) Useful resorting in surface-wave method with the Autojuggie. Geophysics 68:1906–1908

    Google Scholar 

  • Tokimatsu K (1995) Geotechnical site characterisation using surface waves. In: Proceedings of the IS Tokyo 1995, Balkema, pp 1333–1368

  • Tokimatsu K, Kuwayama S, Tamura S, Miyadera Y (1991) Vs determination from steady state Rayleigh wave method. Soils Found 31:153–163

    Google Scholar 

  • Tokimatsu K, Tamura S, Kojima H (1992) Effects of multiple modes on Rayleigh wave dispersion characteristics. J Geotech Eng 118:1529–1543

    Google Scholar 

  • Tselentis G-A, Delis G (1998) Rapid assessment of S-wave profiles from the inversion of multichannel surface wave dispersion data. Annal Geofis 41:1–15

    Google Scholar 

  • Tuan TT, Scherbaum F, Malischewsky PG (2011) On the relationship of peaks and troughs of the ellipticity (H/V) of Rayleigh waves and the transmission response of single layer over half-space models. Geophys J Int 184:793–800

    Google Scholar 

  • van der Kruk JR, Jacob W, Vereecken H (2010) Properties of precipitation-induced multilayer surface waveguides derived from inversion of dispersive TE and TM GPR data. Geophysics 75(4):WA263

    Google Scholar 

  • Van der Sluis A, Van der Vorst HA (1987) Numerical solution of large sparse linear algebraic system arising from tomographic problems. In: Nolet G, Reidel D (eds) Seismic tomography. Norwell, Mass, pp 49–83

    Google Scholar 

  • Wapenaar K (2004) Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Phys Rev Lett 93(25):4301–4304

    Google Scholar 

  • Wapenaar K, Fokkema J (2006) Green’s function representations for seismic interferometry. Geophyscis 71:SI33–SI44

    Google Scholar 

  • Wathelet M, Jongmans D, Ohrnberger M (2004) Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surface Geophys 2:211–221

    Google Scholar 

  • Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlation at MHz frequencies. Phys Rev Lett 87:134301–134304

    Google Scholar 

  • Weaver RL, Lobkis OI (2004) Diffuse fields in open systems and the emergence of the Green’s function. J Acoust Soc Am 116:2731–2734

    Google Scholar 

  • Whiteway FE (1966) The use of arrays for earthquake seismology. Proc R Soc Lond A 290:328–348

    Google Scholar 

  • Xia J, Miller RD, Park CB, Tian G (2002) Determining Q of near-surface materials from Rayleigh waves. J Appl Geophys 51:121–129

    Google Scholar 

  • Yamanaka H, Ishida H (1996) Application of Generic algorithms to an inversion of surface-wave dispersion data. Bull Seism Soc Am 86:436–444

    Google Scholar 

  • Yamanaka H, Takemura M, Ishida H, Niwa M (1994) Characteristics of long-period microtremors and their applicability in the exploration of deep sedimentary layers. Bull Seism Soc Am 84:1831–1841

    Google Scholar 

  • Yang Y, Ritzwoller MH, Levshin AL, Shapiro NM (2007) Ambient noise Rayleigh wave tomography across Europe. Geophys J Int 168:259–274. doi:10.1111/j.1365-246X.2006.03203.x

    Google Scholar 

  • Yao H, Van Der Hilst RD, De Hoop MV (2006) Surface-wave array tomography in SE Tibet from ambient seismic noise and two station analysis: I—phase velocity maps. Geophys. J. Int. 166:732–744

    Google Scholar 

  • Yaramanci U, Lange G, Hertrich M (2002) Aquifer characterisation using Surface NMR jointly with other geophysical techniques at the Nauen/Berlin test site. J Appl Geophys 50:47–65

    Google Scholar 

  • Yokoi T, Margaryan S (2008) Consistency of the spatial autocorrelation method with seismic interferometry and its consequence. Geophys Prosp 56:435–451

    Google Scholar 

  • Zhang SX, Chan LS (2003) Possible effects of misidentified mode number on Rayleigh wave inversion. J Appl Geophys 53:17–29

    Google Scholar 

  • Zhang SH, Chan LS, Xia J (2004) The selection of field acquisition parameters for dispersion images from multichannel surface wave data. Pure Appl Geophys 161:185–201

    Google Scholar 

  • Zywicki DJ (1999) Advanced signal processing methods applied to engineering analysis of seismic surface waves. PhD thesis at Georgia Institute of Technology

Download references

Acknowledgments

This work has been developed as part of Project S4 of the Italian National Institute of Geophysics and Volcanology (INGV) funded by the Italian Civil Protection Department. The authors are grateful to two anonymous reviewers for their constructive comments. Figures 17, 18, 19, 20, 21 are reproduced with the kind permission of Springer (License Number 2657641495585, Apr 28, 2011). K Fleming kindly improved the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano Foti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foti, S., Parolai, S., Albarello, D. et al. Application of Surface-Wave Methods for Seismic Site Characterization. Surv Geophys 32, 777–825 (2011). https://doi.org/10.1007/s10712-011-9134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-011-9134-2

Keywords

Navigation