Skip to main content
Log in

Developing effective subsoil reference model for seismic microzonation studies: Central Italy case studies

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A general methodological approach is here discussed to integrate geological and geophysical information in seismic microzonation studies. In particular, the methodology aims at maximizing the exploitation of low-cost data for an extensive preliminary assessment of ground motion amplification phenomena induced by the local seismo-stratigraphical configuration. Three main steps are delineated: (a) the combination of geological/geomorphological analyses to develop an Engineering-Geological Model of the study area; (b) targeted geophysical prospecting to provide an Engineering-Geological/Geophysical Model; (c) evaluating effectiveness of Engineering-Geological/Geophysical Model by estimating expected ground motion amplification phenomena by the use of suitable computational tools. The workflow is illustrated by a case-study based on a set of villages in the Umbro-Marchean Apennine (Central Italy) damaged during the Seismic sequence that occurred in Central Italy during 2016–2017.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albarello D (2017) Extensive application of seismic microzoning: methodological and socio-political issues in the Italian Experience. Boll Geofis Teor Appl 58(4):253–264. https://doi.org/10.4430/bgta0205

    Article  Google Scholar 

  • Albarello D, Cesi C, Eulilli V, Guerrini F, Lunedei E, Paolucci E, Pileggi D, Puzzilli LM (2011) The contribution of the ambient vibration prospecting in seismic microzoning: an example from the area damaged by the 26th April 2009 L’Aquila (Italy) earthquake. Boll Geofis Teor Appl 52:513–538. https://doi.org/10.4430/bgta0013

    Article  Google Scholar 

  • Albarello D, Socco LV, Picozzi M, Foti S (2015) Seismic Hazard and land management policies in Italy: the role of seismic investigations. First Break 33:87–93. https://doi.org/10.3997/1365-2397.33.8.82009

    Article  Google Scholar 

  • Albarello D, Francescone M, Lunedei E, Paolucci E, Papasidero MP, Peruzzi G, Pieruccini P (2017) Seismic characterization and reconstruction of reference ground motion at accelerometric sites of the Italian national accelerometric network (RAN). Nat Hazards 86:401–416. https://doi.org/10.1007/s11069-016-2310-4

    Article  Google Scholar 

  • Amanti M, Chiessi V, Muraro C, Puzzilli LM, Roma M, Catalano S, Romagnoli G, Tortorici G, Cavuoto G, Albarello D, Fantozzi PL, Paolucci E, Pieruccini P, Caprari P, Mirabella F, Della Seta M, Esposito C, Di Curzio D, Francescone M, Pizzi A, Macerola L, Nocentini M, Tallini M (2020) Geological and geotechnical models definition for 3rd level seismic microzonation studies in Central Italy. Bull Earthq Eng 18:5441–5473. https://doi.org/10.1007/s10518-020-00843-x

    Article  Google Scholar 

  • Arai H, Tokimatsu K (2005) S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bull Seismol Soc Am 95(5):1766–1778. https://doi.org/10.1785/0120040243

    Article  Google Scholar 

  • Ashford SA, Sitar N (1997) Analysis of topographic amplification of inclined shear waves in a steep coastal bluff. Bull Seismol Soc Am 87:692–700

    Article  Google Scholar 

  • ASTM (2017) Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, www.astm.org

  • Various Authors (2011) Contributi per l’aggiornamento degli ‘‘Indirizzi e criteri per la microzonazione sismica’’, in: Ingegneria Sismica, 28, 2, Patron editore, Bologna, Italy (in Italian), http://www.protezionecivile.gov.it/resources/cms/documents/aggiornamento_indirizzi_microzonazione_sismica.pdf

  • Baratta M (1910) La catastrofe sismica calabro messinese: 28 dicembre 1908. Società geografica italiana, reprinted by Forni, 1985, Bologna (in Italian)

  • Bard PY (1999) Microtremor measurements: a tool for site effect estimation? In: Irikura K, Kudo K, Okada H, Sasatani T (eds) The effects of surface geology on seismic motion. Balkema, Rotterdam, pp 1251–1279

    Google Scholar 

  • Bigi S, Cantalamessa G, Centamore E, Didaskalou P, Micarelli A, Nisio S, Pennesi T, Potetti M (1997) The periadriatic basin (Marche-Abruzzi sector, Central Italy) during the Plio-Pleistocene. Giorn Geol 59:245–259

    Google Scholar 

  • Boccaletti M, Calamita F, Deiana G, Gelati R, Massari F, Moratti G, Ricci Lucchi F (1990) Migrating foredeep-thrust belt system in the Northern Apennines and Southern Alps. Paleo Paleo Paleo 77:3–14. https://doi.org/10.1016/0031-0182(90)90095-O

    Article  Google Scholar 

  • Bonnefoy-Claudet S, Cotton F, Bard PY (2006) The nature of noise wavefield and its applications for site effects studies: a literature review. Earth Sci Rev 9:205–227. https://doi.org/10.1016/j.earscirev.2006.07.004

    Article  Google Scholar 

  • BSSC NEHRP (2000) Recommended provisions for seismic regulations for new buildings and other structures. 2000 Edition, Building Seismic Safety Council for the Federal Emergency Management Agency (FEMA Rep. 368, 369), Part 1: Provisions (FEMA Report 368); Part 2: Commentary (FEMA Report 369), Washington, D.C

  • Caielli G, De Franco R, Di Fiore V, Albarello D, Catalano S, Pergalani F, Cavuoto G, Cercato M, Compagnoni M, Facciorusso J, Famiani D, Ferri F, Imposa S, Martini G, Paciello A, Paolucci E, Passeri F, Piscitelli S, Puzzilli LM, Vassallo M (2020) Extensive surface geophysical prospecting for seismic microzonation. Bull Earthq Eng 18:5475–5502. https://doi.org/10.1007/s10518-020-00866-4

    Article  Google Scholar 

  • Calamita F, Deiana G (1988) The arcuate shape of the Umbria-Marche-Sabina Apennines (Central Italy). Tectonophysics 146:139–147. https://doi.org/10.1016/0040-1951(88)90087-X

    Article  Google Scholar 

  • Calamita F, Coltorti M, Pieruccini P, Pizzi A (1999) Evoluzione strutturale e morfogenesi plio-quaternaria dell’Appennino umbro-marchigiano tra il pedappennino umbro e la costa adriatica. Boll Soc Geol It 118:125–139 (in Italian)

    Google Scholar 

  • Cavazza W, Roure F, Ziegler PA (2004) The Mediterranean area and the surrounding regions: active processes, remnants of former Tethyan oceans and related thrust belts. In: Cavazza W, Roure F, Spakman W, Stampf GM, Ziegler PA (eds) The Transmed Atlas The Mediterranean Region from crust to mantle. Springer, Berlin, pp 1–29

    Chapter  Google Scholar 

  • Centamore E, Deiana G, Micarelli A, Potetti M (1986) Il Trias-Paleogene delle Marche. In: Centamore E, Deiana G (eds) La Geologia delle Marche. Studi Geol, Camerti, pp 9–27 ((in Italian))

    Google Scholar 

  • Centamore E, Cantalamessa G, Micarelli A, Potetti M, Berti D, Bigi S, Morelli C, Ridolfi M (1991) Stratigrafia ed analisi di facies dei depositi del Miocene e del Pliocene inferiore dell’avanfossa marchigiano-abruzzese e delle avanfosse limitrofe. Studi Geol Camerti, Vol. Spec. 1991/2, 125–132 (in Italian)

  • Ciancimino A, Lanzo G, Alleanza GA, Amoroso S, Bardotti R, Biondi G, Cascone E, Castelli F, Di Giulio A, D’Onofrio A, Foti S, Lentini V, Madiai C, Vessia G (2020) Dynamic characterization of fine-grained soils in Central Italy by laboratory testing. Bull Earthq Eng 18:5503–5531. https://doi.org/10.1007/s10518-019-00611-6

    Article  Google Scholar 

  • Coltorti M, Pieruccini P (1999) A late Lower Pliocene planation surface across the Italian Peninsula: a key tool in neotectonic studies. J Geodyn 29:323–328. https://doi.org/10.1016/S0264-3707(99)00049-6

    Article  Google Scholar 

  • Cosentino D, Cipollari P, Marsili P, Scrocca D (2010) Geology of the central Apennines: a regional review, In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (Eds.), J Virtual Explorer, 36, 11. https://doi.org/10.3809/jvirtex.2009.00223

  • CTMS (Commissione tecnica per la Microzonazione sismica) (2018) Standard di Rappresentazione ed archiviazione informatica, versione 4.1.1, Dept.of Civil Protection, Rome (in Italian), https://www.centromicrozonazionesismica.it/it/download/send/26-standardms-41/71-standardms-4-1

  • DB-SM (2019) Portale cartografico della Microzonazione Sismica e della Condizione Limite per l’Emergenza, https://www.webms.it/servizi/viewer.php; [accessed, March 2020]

  • EN 1998-1 (2004) Eurocode 8: Design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for buildings, Brussels

  • Faccioli E (ed) (1986) Elementi per una guida alle indagini di microzonazione sismica. Consiglio Nazione delle Ricerche, Rome (in Italian)

    Google Scholar 

  • Foti S, Parolai S, Albarello D, Picozzi M (2011) Application of surface wave methods for seismic site characterization. Surv Geophys 32(6):777–825. https://doi.org/10.1007/s10712-011-9134-2

    Article  Google Scholar 

  • Foti S, Hollender F, Garofalo F, Albarello D, Asten M, Bard PY, Comina C, Cornou C, Cox B, Di Giulio G, Forbriger T, Hayashi K, Lunedei E, Martin A, Mercerat D, Ohrnberger M, Poggi V, Renalier F, Sicilia D, Socco V (2017) Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bull Earthq Eng 16:2367–2420. https://doi.org/10.1007/s10518-017-0206-7

    Article  Google Scholar 

  • Galli P, Castenetto S, Peronace E (2017) The macroseismic intensity distribution of the 30 October 2016 earthquake in central Italy (Mw 6.6): seismotectonic implications. Tectonics 36:2179–2191. https://doi.org/10.1002/2017TC004583

    Article  Google Scholar 

  • García-Jerez A, Piña-Flores J, Sánchez-Sesma FJ, Luzón F, Perton M (2016) A computer code for forward computation and inversion of the H/V spectral ratio under the diffuse field assumption. Comput Geosci 97:67–78. https://doi.org/10.1016/j.cageo.2016.06.016

    Article  Google Scholar 

  • IAEA (2016) Seismc hazard assessment in site evaluation for nuclear installations: ground motion prediction equations and site response, IAEA-TECDOC-1796, Wien

  • Kottke AR, Rathje EM (2008) "Technical manual for Strata." Report No.: 2008/10. Pacific Earthquake Engineering Research Center, University of California, Berkeley

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, New Jersey, USA

    Google Scholar 

  • Lachet C, Bard PY (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. J Geophys Earth 42:377–397. https://doi.org/10.4294/jpe1952.42.377

    Article  Google Scholar 

  • Mase LZ, Sugianto N, Refrizon (2021) Seismic hazard microzonation of Bengkulu City, Indonesia. Geoenviron Disasters 8:5. https://doi.org/10.1186/s40677-021-00178-y

    Article  Google Scholar 

  • Medvedev SV (1965) Engineering Seismology, Israel Program fo Scientific Translations Ltd., Jerusalem

  • Molnar S, Assaf J, Sirohey A, Adhikari SR (2020) Overview of local site effects and seismic microzonation mapping in Metropolitan Vancouver, British Columbia, Canada. Eng Geol 270:105568. https://doi.org/10.1016/j.enggeo.2020.105568

    Article  Google Scholar 

  • Mori F, Gaudiosi I, Tarquini E, Bramerini F, Castenetto S, Naso G, Spina D (2020) HSM: a synthetic damage-constrained seismic hazard parameter. Bull Earthq Eng 18:5631–5654. https://doi.org/10.1007/s10518-019-00677-2

    Article  Google Scholar 

  • Moscatelli M, Albarello D, Scarascia Mugnozza G, Dolce M (2020) The Italian approach to seismic microzonation. Bull Earthq Eng 18:5425–5440. https://doi.org/10.1007/s10518-020-00856-6

    Article  Google Scholar 

  • NTC (2018) Norme Tecniche per le Costruzioni. Decreto del Ministero delle Infrastrutture, GU serie generale n.42, 20-02-2018—Suppl. Ordinario n.8

  • Okada H (2003) The microtremor survey method, geophysical monograph series, 12. Soc Explor Geophys. https://doi.org/10.1190/1.9781560801740

    Article  Google Scholar 

  • Pagliaroli A, Pergalani F, Ciancimino A, Chiaradonna A, Compagnoni M, De Silva F, Foti S, Giallini S, Lanzo G, Lombardi F, Luzi L, Macerola L, Nocentini M, Pizzi A, Tallini M, Teramo C (2020) Site response analyses for complex geological and morphological conditions: relevant case-histories from 3rd level seismic microzonation in Central Italy. Bull Earthq Eng 18:5741–5777. https://doi.org/10.1007/s10518-019-00610-7

    Article  Google Scholar 

  • Paolucci R (2002) Amplification of earthquake ground motion by steep topographic irregularities. Earthq Eng Struct Dynam 31:1831–1853. https://doi.org/10.1002/eqe.192

    Article  Google Scholar 

  • Paolucci E, Tanzini A, Peruzzi G, Albarello D, Tiberi P (2020) Empirical testing of a simplified approach for the estimation of 1D lithostratigraphical amplification factor. Bull Earthq Eng 18:1285–1301. https://doi.org/10.1007/s10518-019-00772-4

    Article  Google Scholar 

  • Park CB (2011) Imaging dispersion of MASW data-full vs. selective offset scheme. J Environ Eng Geophys 16(1):13–23. https://doi.org/10.2113/JEEG16.1.13

    Article  Google Scholar 

  • Peruzzi G, Albarello D, Baglione M, D’Intinosante V, Fabbroni P, Pileggi D (2016) Assessing 1D seismic response in microzoning studies in Italy. Bull Earthq Eng 14:373–389. https://doi.org/10.1007/s10518-015-9841-z

    Article  Google Scholar 

  • Régnier J, Bertrand E, Cadet H (2020) Repeatable process for seismic microzonation using 1-D site-specific response spectra assessment approaches. Application to the city of Nice, France. Eng Geol 270:105569. https://doi.org/10.1016/j.enggeo.2020.105569

    Article  Google Scholar 

  • Salsabili M, Saeidi A, Rouleau A, Nastev N (2021) Seismic microzonation of a region with complex surficial geology based on different site classification approaches. Geoenviron Disasters. https://doi.org/10.1186/s40677-021-00198-8

    Article  Google Scholar 

  • Thitimakorn T (2019) Seismic microzonation maps of Phrae city, Northern Thailand. Geomat Nat Haz Risk 10(1):2276–2290. https://doi.org/10.1080/19475705.2019.1693705

    Article  Google Scholar 

  • WGSM (Working Group on Seismic Microzoning) (2008) Indirizzi e criteri per la microzonazione sismica, Conferenza delle Regioni e delle Province autonome—Dipartimento della Protezione Civile, Rome, 3 vol. and DVD (in Italian), http://www.protezionecivile.gov.it/jcms/it/view_pub.wp?conte ntId=PUB1137, English version at http://www.protezionecivile.gov.it/httpdocs/cms/attach_extra/GuidelinesForSeismicMicrozonation.pdf?

  • WGSMLA (Working Group on Seismic Microzoning the L’Aquila Area) (2010) Microzonazione sismica per la ricostruzione dell’area aquilana, Regione Abruzzo, Dipartimento della Protezione Civile, 3 vols and DVD, 796 pp. (in Italian), http://www.protezionecivile.gov.it/jcms/it/view_pub.wp?contentId=PUB25330

Download references

Acknowledgments

We are grateful to Silvia Marchese, Valerio Ferrazza and Michele Amaddii for their help in performing geophysical and geological/geomorphological surveys in the investigated areas. Vincenzo.Amato and the other anonymous referee also provided encouraging comments and suggestions to improve the paper. The work has been developed in the frame of scientific activity of the Center for Seismic Microzonation and Applications (https://www.centromicrozonazionesismica.it/en/)

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Albarello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pieruccini, P., Paolucci, E., Fantozzi, P.L. et al. Developing effective subsoil reference model for seismic microzonation studies: Central Italy case studies. Nat Hazards 112, 451–474 (2022). https://doi.org/10.1007/s11069-021-05188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-05188-5

Keywords

Navigation