Skip to main content
Log in

Three-dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a new algorithm for three-dimensional coverage path planning for autonomous structural inspection operations using aerial robots. The proposed approach is capable of computing short inspection paths via an alternating two-step optimization algorithm according to which at every iteration it attempts to find a new and improved set of viewpoints that together provide full coverage with decreased path cost. The algorithm supports the integration of multiple sensors with different fields of view, the limitations of which are respected. Both fixed-wing as well as rotorcraft aerial robot configurations are supported and their motion constraints are respected at all optimization steps, while the algorithm operates on both mesh- and occupancy map-based representations of the environment. To thoroughly evaluate this new path planning strategy, a set of large-scale simulation scenarios was considered, followed by multiple real-life experimental test-cases using both vehicle configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Acar, E. U., Choset, H., & Lee, J. Y. (2006). Sensor-based coverage with extended range detectors. IEEE Transactions on Robotics, 22(1), 189–198.

    Article  Google Scholar 

  • Alexis, K., Nikolakopoulos, G., & Tzes, A. (2012). Model predictive quadrotor control: Attitude, altitude and position experimental studies. Control Theory & Applications, IET, 6(12), 1812–1827.

    Article  MathSciNet  Google Scholar 

  • Atkar, P., Conner, D. C., Greenfield, A., Choset, H., & Rizzi, A. A. (2004). Uniform coverage of simple surfaces embedded in R 3 for auto-body painting. In Sixth workshop on the algorithmic foundations of robotics, Utrecht/Zeist, The Netherlands.

  • Autopilot, P. (2015). http://pixhawk.org/.

  • Bircher, A., & Alexis, K. (2015) Structural inspection planner code release (Online). https://github.com/ethz-asl/StructuralInspectionPlanner.

  • Bircher, A., Alexis, K., Burri, M., Kamel, M., Oettershagen, P., Omari, S., Mantel, T., & Siegwart, R. (2015a) Structural inspection planner dataset release (Online). https://github.com/ethz-asl/StructuralInspectionPlanner/wiki/Example-Results.

  • Bircher, A., Alexis, K., Burri, M., Oettershagen, P., Omari, S., Mantel, T., & Siegwart, R. (2015b). Structural inspection path planning via iterative viewpoint resampling with application to aerial robotics. In IEEE international conference on robotics and automation (ICRA) (pp. 6423–6430).

  • Boon, K., & Lovelace, D. C. (2014). The domestic use of unmanned aerial vehicles. Oxford: Oxford University Press.

    Google Scholar 

  • Burri, M., Nikolic, J., Hurzeler, C., Caprari, G., & Siegwart, R. (2012). Aerial service robots for visual inspection of thermal power plant boiler systems. In 2nd International conference on applied robotics for the power industry (CARPI) (pp. 70–75).

  • Camacho, E. F., & Bordons, C. (2003). Model predictive control. Berlin: Springer.

    MATH  Google Scholar 

  • Choset, H., & Pignon, P. (1998). Coverage path planning: The boustrophedon cellular decomposition. In Field and service robotics (pp. 203–209) Springer.

  • Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale traveling-salesman problem. Journal of the Operations Research Society of America, 2(4), 393–410.

    Article  MathSciNet  Google Scholar 

  • Domahidi, A. (October 2012). FORCES: Fast optimization for real-time control on embedded systems. http://forces.ethz.ch.

  • Ferreau, H., Kirches, C., Potschka, A., Bock, H., & Diehl, M. (2014). qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation, 6(4), 327–363.

    Article  MathSciNet  MATH  Google Scholar 

  • Gabriely, Y., & Rimon, E. (2002). Spiral-stc: An on-line coverage algorithm of grid environments by a mobile robot. In Proceedings of IEEE international conference on robotics and automation, ICRA’02. (vol. 1, pp. 954–960). IEEE

  • Galceran, E., & Carreras, M. (2013). A survey on coverage path planning for robotics. Robotics and Autonomous Systems, 61(12), 1258–1276.

    Article  Google Scholar 

  • González-Baños, H. (2001). A randomized art-gallery algorithm for sensor placement. In Proceedings of the seventeenth annual symposium on Computational geometry (pp. 232–240). ACM.

  • Grabcad. https://grabcad.com/library/generic-direct-drive-wind-turbine-with-77-dot-5-meter-conventional-tower.

  • Helsgaun, K. (2000). An effective implementation of the lin-kernighan traveling salesman heuristic. European Journal of Operational Research, 126(1), 106–130.

    Article  MathSciNet  MATH  Google Scholar 

  • Hert, S., Tiwari, S., & Lumelsky, V. (1996). A terrain-covering algorithm for an auv. In Underwater Robots (pp. 17–45) Springer.

  • Hover, F. S., Eustice, R. M., Kim, A., Englot, B., Johannsson, H., Kaess, M., et al. (2012). Advanced perception, navigation and planning for autonomous in-water ship hull inspection. The International Journal of Robotics Research, 31(12), 1445–1464.

    Article  Google Scholar 

  • ICARUS: Unmanned search and rescue. http://www.fp7-icarus.eu/.

  • Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846–894.

    Article  MATH  Google Scholar 

  • Kroll, A., Baetz, W., & Peretzki, D. (May 2009). On autonomous detection of pressured air and gas leaks using passive ir-thermography for mobile robot application. In International conference on robotics and automation, 2009. ICRA ’09. IEEE (pp. 921–926).

  • Leutenegger, S. (2014). Unmanned solar airplanes: Design and algorithms for efficient and robust autonomous operation. Ph.D. Dissertation, ETH Zurich.

  • Leutenegger, S., Melzer, A., Alexis, K., & Siegwart, R. (2014). Robust state estimation for small unmanned airplanes. In IEEE Multiconference on systems and control (MSC), Antibes, France.

  • Leutenegger, S., Melzer, A., Alexis, K., & Siegwart, R. (2014). Robust state estimation for small unmanned airplanes. In IEEE multi-conference on systems and control.

  • Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations research, 21(2), 498–516.

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, C., Yang, S. X., Stacey, D. A., & Jofriet, J. C. (2002). A solution to vicinity problem of obstacles in complete coverage path planning. In Proceedings of IEEE international conference on robotics and automation, ICRA’02 (vol. 1, pp. 612–617). IEEE.

  • Metni, N., & Hamel, T. (2007). A UAV for bridge inspection: Visual servoing control law with orientation limits. Automation in Construction, 17(1), 3–10.

    Article  Google Scholar 

  • Nikolic, J., Rehder, J., Burri, M., Gohl, P., Leutenegger, S., Furgale, P. T., & Siegwart, R. Y. (2014). A Synchronized Visual-inertial sensor system with FPGA pre-processing for accurate real-time SLAM. In IEEE International conference on robotics and automation (ICRA).

  • Noth, A. (2008). Design of solar powered airplanes for continuous flight. Ph.D. dissertation, ETH Zurich.

  • Oettershagen, P., Melzer, A., Leutenegger, S., Alexis, K., & Siegwart, R. (2014). Explicit model predictive control and \({\cal L}_1\)-navigation strategies for fixed-wing UAV path tracking. In 22nd Mediterranean conference on control & automation (MED).

  • Oettershagen, P., Melzer, A., Mantel, T., Rudin, K., Lotz, R., Siebenmann, D., Leutenegger, S., Alexis, K., & Siegwart, R. (May 2015). A solar-powered hand-launchable uav for low-altitude multi-day continuous flight. In IEEE International conference on robotics and automation (ICRA) (accepted).

  • O’rourke, J. (1987). Art gallery theorems and algorithms (Vol. 57). Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Papadopoulos, G., Kurniawati, H., & Patrikalakis, N. M. (2013). Asymptotically optimal inspection planning using systems with differential constraints. In IEEE International conference on robotics and automation (ICRA) (pp. 4126–4133). IEEE.

  • Park, S., Deyst, J., & How, J. P. (2004). A new nonlinear guidance logic for trajectory tracking. In AIAA guidance, navigation, and control conference and exhibit (pp. 16–19).

  • Pix4D. http://pix4d.com/.

  • RotorS: An MAV gazebo simulator. https://github.com/ethz-asl/rotors_simulator.’

  • Skybotix, A. G. http://www.skybotix.com/.

  • Stevens, Brian L., & Lewis, Frank L. (1992). Aircraft control and simulation. Hoboken: Wiley.

    Google Scholar 

  • Swisstopo swissAlti3D height map. http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/height/swissALTI3D.html.

  • Zelinsky, A., Jarvis, R. A., Byrne, J., & Yuta, S. (1993). Planning paths of complete coverage of an unstructured environment by a mobile robot. Proceedings of International Conference on Advanced Robotics, 13, 533–538.

    Google Scholar 

Download references

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Grant Agreement No.644128, AEROWORKS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Alexis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bircher, A., Kamel, M., Alexis, K. et al. Three-dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots. Auton Robot 40, 1059–1078 (2016). https://doi.org/10.1007/s10514-015-9517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9517-1

Keywords

Navigation