Skip to main content
Log in

Bioinspired velocity control of fast gaze shifts on a robotic anthropomorphic head

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper we address the problem of executing fast gaze shifts toward a visual target with a robotic platform. The robotic platform is an anthropomorphic head with seven degrees of freedom (DOFs) that was designed to mimic the physical dimensions (i.e. geometry and masses), the performances (i.e. angles and velocities) and the functional abilities (i.e. neck-movements and eyes vergence) of the human head. In our approach the “gold performance” of the robotic head is represented by the accurate eye-head coordination that is observed during head-free gaze saccades in humans.

To this aim, we implemented and tested on the robotic head a well-characterized, biologically inspired model of gaze control and we investigate the effectiveness of the bioinspired paradigm to achieve an appropriate control of the multi-DOF robotic head. Moreover, in order to verify if the proposed model can reproduce the typical patterns of actual human movements, we performed a quantitative investigation of the relation between movement amplitude, duration and peak velocity. In the latter case, we compared the actual robot performances with existing data on human main sequence which is known to provide a general method for quantifying the dynamic of oculomotor control. The obtained results confirmed (1) the ability of the proposed bioinspired control to achieve and maintain and stable fixation of the target which was always well-positioned within the fovea and (2) the ability to reproduce the typical human main sequence diagrams which were never been successfully implemented on a fully anthropomorphic head.

Even if fundamentally aimed at the experimental investigation of the underlying neurophysiologic models, the present study is also intended to provide some possible relevant solutions to the development of human-like eye movements in humanoid robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloimonos, J., Weiss, I., & Bandyopadhyay, A. (1988). Active vision. International Journal of Computer Vision, 1(4), 333–356.

    Article  Google Scholar 

  • Bahill, A. T., Clark, M. R., & Stark, L. (1975). The main sequence, a tool for studying human eye movements. Mathematical Biosciences, 24, 191—204.

    Article  Google Scholar 

  • Baloh, R. W. (1975). Quantitative measurement of saccade amplitude, duration, and velocity. Neurology, 25(11), 1065–1070.

    Google Scholar 

  • Baloh, R. W., Konrad, H. R., Sills, A. W., & Honrubia, V. (1975). The saccade velocity test. Journal of Neurology, 25, 1071–1076.

    Google Scholar 

  • Barnes, G. R. (1979). Vestibulo-ocular function during co-ordinated head and eye movements to acquire visual targets. The Journal of Physiology, 287, 127–147.

    Google Scholar 

  • Becker, W., & Carpenter, R. H. S. (1991). In Eye movements (pp. 95–137). London: Macmillan.

    Google Scholar 

  • Becker, W., & Jürgens, R. (1992). Gaze saccades to visual targets: do head movements change the metrics. In P. Vidal, A. Berthoz, & W. Graf (Eds.), The head–neck sensory motor system. New York: Oxford University Press.

    Google Scholar 

  • Bernardino, A., Silva, C., Santos-Victor, J., & Pinto-Ferreira, C. (1995). Behaviour based oculomotor control architecture for stereo heads. In Proceedings of the 3rd international symposium on intelligent robotic systems, Pisa, Italy, July 1995.

  • Berthouze, L., & Kuniyoshi, Y. (1998). Emergence and categorization of coordinated visual behavior through embodied interaction. Autonomous Robots, 5(3), 369–379.

    Article  Google Scholar 

  • Bizzi, E., Kalil, R. E., & Tagliasco, V. (1971). Eye–head coordination in monkeys: evidence for centrally patterned organization. Science, 173, 452–454.

    Article  Google Scholar 

  • Bizzi, E., Kalil, R. E., & Morasso, P. (1972). Two modes of active eyehead coordination in monkeys. Brain Research, 40, 45–48.

    Article  Google Scholar 

  • Breazeal, C., Edsinger, A., Fitzpatrick, P., & Scassellati, B. (2001). Active vision for sociable robots. IEEE Transactions on Systems, Man and Cybernetics, Part A, 31(5), 443–453.

    Article  Google Scholar 

  • Bruske, J., Hansen, M., Riehn, L., & Sommer, G. (1997). Biologically inspired calibration-free adaptive saccade control of a binocular camera-head. Biological Cybernetics, 77(6), 433–446.

    Article  MATH  Google Scholar 

  • Ciuffreda, K. J., & Tannen, B. (1995). Eye movement basics for the clinician. St. Lois: Mosby.

    Google Scholar 

  • Collewijn, H., Erkelens, C. J., & Steinman, R. M. (1988). Binocular co-ordination of human horizontal saccadic eye movements. The Journal of Physiology, 404(1), 157–182.

    Google Scholar 

  • Enderle, J. D., Blanchard, S. M., & Bronzino, J. D. (2005). Introduction to biomedical engineering (2nd. ed.). San Diego: Academic Press.

    Google Scholar 

  • Ferrell, C. (1996). Orientation behavior using registered topographic maps. In From animals to animats: proceedings (pp. 94–103).

  • Freedman, E. G., & Sparks, D. L. (1997). Eye–head coordination during head-unrestrained gaze shifts in rhesus monkeys. Journal of Neurophysiology, 77, 2328–2348.

    Google Scholar 

  • Freedman, E. G., & Sparks, D. L. (2000). Coordination of the eyes and head: movement kinematics. Experimental Brain Research, 131, 22–32.

    Article  Google Scholar 

  • Gangemi, P. F., Messori, A., Baldini, S., Parigi, A., Massi, S., & Zaccara, G. (1991). Comparison of two nonlinear models for fitting saccadic eye movement data. Computer Methods and Programs in Biomedicine, 34(4), 291–297.

    Article  Google Scholar 

  • Goldring, J. E., Dorris, M. C., Corneil, B. D., Ballantyne, P. A., & Munoz, D. P. (1996). Combined eye–head gaze shifts to visual and auditory targets in humans. Experimental Brain Research, 111, 68–78.

    Article  Google Scholar 

  • Goossens, H. H., & Van Opstal, A. J. (1997). Human eye–head coordination in two dimensions under different sensorimotor conditions. Experimental Brain Research, 114, 542–560.

    Article  Google Scholar 

  • Green, D. G. (1970). Regional variations in the visual acuity for interference fringes on the retina. The Journal of Physiology, 207(2), 351–356.

    Google Scholar 

  • Guitton, D. (1992). Control of eye–head coordination during orienting gaze shifts. Trends in Neurosciences, 15, 174–179.

    Article  Google Scholar 

  • Guitton, D., & Volle, M. (1987). Gaze control in humans: eye–head coordination during orienting movements to targets within and beyond the oculomotor range. Journal of Neurophysiology, 58, 496–508.

    Google Scholar 

  • Harris, C. M., & Wolpert, D. M. (2006). The main sequence of saccades optimizes speed-accuracy trade-off. Biological Cybernetics, 95(1), 21–29.

    Article  MATH  MathSciNet  Google Scholar 

  • Inchingolo, P., & Spanio, M. (1985). On the identification and analysis of saccadic eye movements. A quantitative study of the processing procedures. IEEE Transactions on Biomedical Engineering, 32, 683–695.

    Article  Google Scholar 

  • Inchingolo, P., Spanio, M., & Bianchi, M. (1987). The characteristic peak velocity-mean velocity of saccadic eye movements in man. In J. K. Regan & A. Levy-Schoen (Eds.), Eye movements: from physiology to cognition (pp. 17–26).

  • Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57(3), 169–185.

    Article  MATH  Google Scholar 

  • Laschi, C., Patane, F., Maini, E. S., Manfredi, L., Teti, G., Zollo, L., Guglielmelli, E., & Dario, P. (2008). An anthropomorphic robotic head for investigating gaze control. Advanced Robotics, 22(1).

  • Laurutis, V. P., & Robinson, D. A. (1986). The vestibulo-ocular reflex during human saccadic eye movements. The Journal of Physiology, 373, 209–233.

    Google Scholar 

  • Lebedev, S., Van Gelder, P., & Tsui, W. H. (1996). Square-root relations between main saccadic parameters. Investigative Ophthalmology & Visual Science, 37(13), 2750–2758.

    Google Scholar 

  • Lefevre, P., Bottemanne, I., & Roucoux, A. (1992). Experimental study and modeling of vestibulo-ocular reflex modulation during large shifts of gaze in humans. Experimental Brain Research, 91, 496–508.

    Article  Google Scholar 

  • Leigh, R. J., & Zee, D. S. (1999). The neurology of eye movements. Oxford: Oxford University Press.

    Google Scholar 

  • Miwa, H., Itoh, K., Matsumoto, M., Zecca, M., Takanobu, H., Roccella, S., Carrozza, M. C., Dario, P., & Takanishi, A. (2004). Effective emotional expressions with emotion expression humanoid robot WE-4RII. In Proceedings IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 2203–2208).

  • Miyamoto, H., Kawato, M., Setoyama, T., & Suzuki, R. (1988). Feedback-error-learning neural network for trajectory control of a robotic manipulator. Neural Networks, 1(3), 251–265.

    Article  Google Scholar 

  • Panerai, F., Metta, G., & Sandini, G. (2000). Adaptive image stabilization: a need for vision-based active robotic agents. In International conference on simulation of adaptive behavior, Paris, France.

  • Phillips, J. O., Ling, L., Fuchs, A. F., Seibold, C., & Plorde, J. J. (1995). Rapid horizontal gaze movement in the monkey. Journal of Neurophysiology, 73, 1632–1652.

    Google Scholar 

  • Polyak, S. L. (1941). The retina. Chicago: University of Chicago Press.

    Google Scholar 

  • Press, W. H., et al. (1986). Numerical recipes. New York: Cambridge University Press.

    Google Scholar 

  • Proudlock, F. A., & Gottlob, I. (2007). Physiology and pathology of eye–head coordination. Progress in Retinal and Eye Research, 26(5), 486–515.

    Article  Google Scholar 

  • Ron, S., & Berthoz, A. (1991). Coupled and dissociated modes of eyehead coordination in humans to flashed visual targets. Amsterdam: Elsevier.

    Google Scholar 

  • Santini, F., & Rucci, M. (2007). Active estimation of distance in a robotic system that replicates human eye movement. Robotics and Autonomous Systems, 55(2), 107–121.

    Article  Google Scholar 

  • Shibata, T., Vijayakumar, S., Conradt, J., & Schaal, S. (2001). Biomimetic oculomotor control. Adaptive Behavior, 9(3/4), 189–208.

    Article  Google Scholar 

  • Suzuki, T., & Hirai, N. (1998). Reaction times of head movements occurring in association with express saccades during human gaze shifts. Neuroscience Letters, 254, 61–64.

    Article  Google Scholar 

  • Takanishi, A., Matsuno, T., & Kato, I. (1997). Development of an anthropomorphic head–eye robot with two eyes-coordinated head–eye motion and pursuing motion in the depth direction. In Proceedings IEEE/RSJ international conference on intelligent robots and systems (Vol. 2, pp. 799–804).

  • Tweed, D., Glenn, B., & Vilis, T. (1995). Eye–head coordination during large gaze shifts. Journal of Neurophysiology, 73, 766–779.

    Google Scholar 

  • Van Gisbergen, J. A. M., Van Opstal, J. A., & Ottes, F. P. (1984). Parametrization of saccadic velocity profiles in man. In A. G. Gale & F. Johnson (Eds.), Theoretical and applied aspects of eye movement research. New York: Elsevier Science.

    Google Scholar 

  • Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Stefano Maini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maini, E.S., Manfredi, L., Laschi, C. et al. Bioinspired velocity control of fast gaze shifts on a robotic anthropomorphic head. Auton Robot 25, 37–58 (2008). https://doi.org/10.1007/s10514-007-9078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9078-z

Keywords

Navigation