Skip to main content
Log in

Comparison of microsatellites and SNPs for pedigree analysis in the Pacific oyster Crassostrea gigas

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Knowledge of the pedigree relationships between individuals is a prerequisite ‬in genetics research, and the application of molecular markers for pedigree analysis has been a booming science for over a decade. Owing to the high variability, microsatellites are considered as the marker of choice for studies on pedigree analysis. Nevertheless, single nucleotide polymorphisms (SNPs) have been increasingly used for this purpose in recent years due to the low mutation rate and genotyping error rate. To compare the utility of microsatellites and SNPs in assigning parentage in the Pacific oyster (Crassostrea gigas), we genotyped 384 parental and offspring individuals using 12 multiplexed microsatellites and 50 SNPs. In this study, all microsatellite loci showed high informative (PIC >0.5), while most SNPs were middle informative (0.25 <PIC <0.5). CERVUS simulations revealed that using nine microsatellites or 38 SNPs, the power of parental assignment could reach 100%. Pedigree analysis of real offspring demonstrated that 100% of the offspring were unambiguously assigned to a pair of parents when nine microsatellites or 50 SNPs were used. For microsatellites, the combined exclusion power with one parent known (EXCL2) could reach one when three microsatellites multiplex PCRs or more were used, whereas EXCL2 was 0.9999 for the 50 SNPs. In general, six SNPs were needed to obtain an equivalent exclusion power for pedigree analysis with a microsatellite locus in C. gigas. The information obtained in this study will be useful for assigning parentage in C. gigas using both marker systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aitken N, Smith S, Schwarz C, Morin PA (2004) Single nucleotide polymorphism (SNP) discovery in mammals: a targeted-gene approach. Mol Ecol 13:1423–1431

    Article  CAS  PubMed  Google Scholar 

  • An HS, Lee JW, Kim HC, Myeong JI (2011) Genetic characterization of five hatchery populations of the Pacific abalone (Haliotis discus hannai) using microsatellite markers. Int J Mol Sci 12:4836–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An HS, Lee JW, Kim WJ, Lim HJ, Kim EM, Byun SG, Hur YB, Park JY, Myeong JI, An CM (2013) Comparative genetic diversity of wild and hatchery-produced Pacific oyster (Crassostrea gigas) populations in Korea using multiplex PCR assays with nine polymorphic microsatellite markers. Genes Genom 35:805–815

    Article  CAS  Google Scholar 

  • Anderson EC, Garza JC (2006) The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics 172:2567–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai J, Li Q, Kong LF, Li RH (2009) Characterization of 20 single nucleotide polymorphism markers in the Pacific oyster (Crassostrea gigas). Anim Genet 40:1004

    Article  CAS  PubMed  Google Scholar 

  • Bester AE, Roodt-Wilding R, Whitaker HA (2008) Discovery and evaluation of single nucleotide polymorphisms (SNPs) for Haliotis midae: a targeted EST approach. Anim Genet 39:321–324

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castro J, Pino A, Hermida M, Bouza C, Chavarrías D, Merino P, Sánchez L, Martínez P (2007) A microsatellite marker tool for parentage assessment in gilthead seabream (Sparus aurata). Aquaculture 272:S210–S216

    Article  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558

    Article  CAS  PubMed  Google Scholar 

  • FAO (2014) The state of the world fisheries and aquaculture 2014. FAO, Rome

    Google Scholar 

  • Fernández ME, Goszczynski DE, Lirón JP, Villegas-Castagnasso EE, Carino MH, Ripoli MV, Rogberg-Muñoz A, Posik DM, Peral-García P, Giovambattista G (2013) Comparison of the effectiveness of microsatellites and SNP panels for genetic identification, traceability and assessment of parentage in an inbred Angus herd. Genet Mol Biol 36:185–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu J, Shen Y, Xu X, Chen Y, Li D, Li J (2013) Multiplex microsatellite PCR sets for parentage assignment of grass carp (Ctenopharyngodon idella). Aquacult Int 21:1195–1207

    Article  CAS  Google Scholar 

  • Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet 2:1–18

    Google Scholar 

  • Glaubitz JC, Rhodes OE, DeWoody JA (2003) Prospects for inferring pairwise relationships with single nucleotide polymorphisms. Mol Ecol 12:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611

    Article  CAS  PubMed  Google Scholar 

  • Hansen MHH, Young S, Jørgensen HBH, Pascal C, Henryon M, Seeb J (2011) Assembling a dual purpose TaqMan-based panel of single-nucleotide polymorphism markers in rainbow trout and steelhead (Oncorhynchus mykiss) for association mapping and population genetics analysis. Mol Ecol Resour 11:67–70

    Article  CAS  PubMed  Google Scholar 

  • Hauser L, Baird M, Hilborn RAY, Seeb LW, Seeb JE (2011) An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon (Oncorhynchus nerka) population. Mol Ecol Resour 11:150–161

    Article  PubMed  Google Scholar 

  • Hedgecock D, Li G, Hubert S, Bucklin K, Ribes V (2004) Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas. J Shellfish Res 23:379–386

    Google Scholar 

  • Helyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT, Cariani A, Maes GE, Diopere E, Carvalho GR, Nielsen EE (2011) Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11:123–136

    Article  PubMed  Google Scholar 

  • Herbinger CM, Doyle RW, Pitman ER, Paquet D, Mesa KA, Morris DB, Wright JM, Cook D (1995) DNA fingerprint based analysis of paternal and maternal effects on offspring growth and survival in communally reared rainbow trout. Aquaculture 137:245–256

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kong L, Bai J, Li Q (2014) Comparative assessment of genomic SSR, EST–SSR and EST–SNP markers for evaluation of the genetic diversity of wild and cultured Pacific oyster, Crassostrea gigas Thunberg. Aquaculture 420:S85–S91

    Article  Google Scholar 

  • Lallias D, Taris N, Boudry P, Bonhomme F, Lapegue S (2010) Variance in the reproductive success of flat oyster Ostrea edulis L. assessed by parentage analyses in natural and experimental conditions. Genet Res 92:175–187

    Article  CAS  Google Scholar 

  • Lapegue S, Harrang E, Heurtebise S, Flahauw E, Donnadieu C, Gayral P, Ballenghien M, Genestout L, Barbotte L, Mahla R, Haffray P, Klopp C (2014) Development of SNP-genotyping arrays in two shellfish species. Mol Ecol Resour 14:820–830

    Article  CAS  PubMed  Google Scholar 

  • Lemer S, Rochel E, Planes S (2011) Correction method for null alleles in species with variable microsatellite flanking regions, a case study of the black-lipped pearl oyster Pinctada margaritifera. J Hered 102:243–246

    Article  CAS  PubMed  Google Scholar 

  • Li L, Guo X, Zhang G (2009) Inheritance of 15 microsatellites in the Pacific oyster Crassostrea gigas: segregation and null allele identification for linkage analysis. Chin J Oceanol Limnol 27:74–79

    Article  CAS  Google Scholar 

  • Li Q, Yu H, Yu R (2006) Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (Crassostrea gigas) in China. Aquaculture 259:95–102

    Article  CAS  Google Scholar 

  • Li R, Li Q, Cornette F, Dégremont L, Lapègue S (2010) Development of four EST-SSR multiplex PCRs in the Pacific oyster (Crassostrea gigas) and their validation in parentage assignment. Aquaculture 310:234–239

    Article  CAS  Google Scholar 

  • Liu T, Li Q, Song J, Yu H (2016) Development of genomic microsatellite multiplex PCR using dye-labeled universal primer and its validation in pedigree analysis of Pacific oyster (Crassostrea gigas). J Ocean U China, in press.

  • Liu WD, Li HJ, Bao XB, He CB, Li WJ, Shan ZG (2011) The first set of EST-derived single nucleotide polymorphism markers for Japanese scallop, Patinopecten yessoensis. J World Aquacult Soc 42:456–461

    Article  Google Scholar 

  • McGoldrick DJ, Hedgecock D, English LJ, Baoprasertkul P, Ward RD (2000) The transmission of microsatellite alleles in Australian and north American stocks of the Pacific oyster (Crassostrea gigas): selection and null alleles. J Shellfish Res 19:779–788

    Google Scholar 

  • McInerney CE, Allcock AL, Johnson MP, Bailie DA, Prodöhl PA (2011) Comparative genomic analysis reveals species-dependent complexities that explain difficulties with microsatellite marker development in molluscs. Heredity 106:78–87

    Article  CAS  PubMed  Google Scholar 

  • Miller PA, Elliott NG, Koutoulis A, Kube PD, Vaillancourt RE (2012) Genetic diversity of cultured, naturalized, and native Pacific oysters, Crassostrea gigas, determined from multiplexed microsatellite markers. J Shellfish Res 31:611–617

    Article  Google Scholar 

  • Pemberton JM (2008) Wild pedigrees: the way forward. P Roy Soc B-Biol Sci 275:613–621

    Article  CAS  Google Scholar 

  • Pino-Querido A, Álvarez-Castro JM, Vera M, Pardo BG, Fuentes J, Martínez P (2015) A molecular tool for parentage analysis in the Mediterranean mussel (Mytilus galloprovincialis). Aquac Res 46:1721–1735

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Sekino M, Hamaguchi M, Aranishi F, Okoshi K (2003) Development of novel microsatellite DNA markers from the Pacific oyster Crassostrea gigas. Mar Biotechnol 5:227–233

    Article  CAS  PubMed  Google Scholar 

  • Sellars MJ, Dierens L, McWilliam S, Little B, Murphy B, Coman GJ, Barendse W, Henshall J (2014) Comparison of microsatellite and SNP DNA markers for pedigree assignment in black tiger shrimp, Penaeus monodon. Aquac Res 45:417–426

    Article  CAS  Google Scholar 

  • Taris N, Baron S, Sharbel T, Sauvage C, Boudry P (2005) A combined microsatellite multiplexing and boiling DNA extraction method for high-throughput parentage analyses in the Pacific oyster (Crassostrea gigas). Aquac Res 36:516–518

    Article  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Vandeputte M (2012) An accurate formula to calculate exclusion power of marker sets in parentage assignment. Genet Sel Evol 44:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandeputte M, Haffray P (2014) Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals. Front Genet 5:432

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandeputte M, Rossignol MN, Pincent C (2011) From theory to practice: empirical evaluation of the assignment power of marker sets for pedigree analysis in fish breeding. Aquaculture 314:80–86

    Article  Google Scholar 

  • Vera M, Pardo BG, Pino-Querido A, Álvarez-Dios JA, Fuentes J, Martínez P (2010) Characterization of single-nucleotide polymorphism markers in the Mediterranean mussel, Mytilus galloprovincialis. Aquac Res 41:e568–e575

    Article  CAS  Google Scholar 

  • Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J (2006) Informativeness of genetic markers for pairwise relationship and relatedness inference. Theor Popul Biol 70:300–321

    Article  PubMed  Google Scholar 

  • Wittwer CT (2009) High-resolution DNA melting analysis: advancements and limitations. Hum Mutat 30:857–859

    Article  CAS  PubMed  Google Scholar 

  • Yamtich J, Voigt ML, Li G, Hedgecock D (2005) Eight microsatellite loci for the Pacific oyster Crassostrea gigas. Anim Genet 36:524–526

    CAS  PubMed  Google Scholar 

  • Yu GC, Tang QZ, Long KR, Che TD, Li MZ, Shuai SR (2015) Effectiveness of microsatellite and single nucleotide polymorphism markers for parentage analysis in European domestic pigs. Genet Mol Res 14:1362–1370

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ma W, Wang W, Gui JF, Mei J (2016) Parentage determination of yellow catfish (Pelteobagrus fulvidraco) based on microsatellite DNA markers. Aquacult Int 24:567–576

    Article  CAS  Google Scholar 

  • Zhong X, Li Q, Yu H, Kong L (2013) Development and validation of single-nucleotide polymorphism markers in the Pacific oyster, Crassostrea gigas, using high-resolution melting analysis. J World Aquacult Soc 44:455–465

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the grants from the National Natural Science Foundation of China (31372524), Shandong Seed Project, Shandong Province (2014GHY115002, 2016ZDJS06A06), and Qingdao National Laboratory for Marine Science and Technology (2015ASKJ02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Li, Q., Kong, L. et al. Comparison of microsatellites and SNPs for pedigree analysis in the Pacific oyster Crassostrea gigas . Aquacult Int 25, 1507–1519 (2017). https://doi.org/10.1007/s10499-017-0127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-017-0127-0

Keywords

Navigation