Skip to main content
Log in

Solar-dried kelp as potential feed in sea urchin aquaculture

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Over the past two decades, fishery landings for the highly valued green sea urchin (Strongylocentrotus droebachiensis) have decreased significantly in the Gulf of Maine. Methods for sea urchin aquaculture have been developed in the region, but further growth of the industry is inhibited by the expense of formulated feeds. A potential low-cost solution to this issue is to take advantage of the region’s developing sea vegetable aquaculture industry. A feeding trial was conducted with juvenile hatchery-reared urchins comparing somatic and gonadal growths when fed either fresh wild Saccharina latissima, dried S. latissima, fresh laboratory-reared Porphyra umbilicalis, or the formulated Nofima diet. Somatic and gonadal growths of urchins fed dried S. latissima were intermediate to those fed fresh macroalgae (S. latissima or P. umbilicalis) and the formulated Nofima diet, with significantly faster growth observed in urchins fed the formulated diet and significantly slower growth seen in those fed the fresh macroalgae diets. In light of these results, we propose that dried kelp could suffice as a potential feed in sea urchin aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akiyama T, Unuma T, Yamamoto T (2001) Optimum protein level in a purified diet for young red sea urchin Pseudocentrotus depressus. Fish Sci 67:361–363

    Article  CAS  Google Scholar 

  • Azad AK, Pearce CM, McKinley RS (2011) Effects of diet and temperature on ingestion, absorption, assimilation, gonad yield, and gonad quality of the purple sea urchin (Strongylocentrotus purpuratus). Aquaculture 317:187–196

    Article  Google Scholar 

  • Barrington K, Chopin T, Robinson S (2009) Integrated multiculture (IMTA) in marine temperate waters. In: Soto D (ed) Integrated mariculture: a global review. FOA Fisheries and Aquaculture Technical Paper. No. 529. Rome, FAO, pp 7–46

  • Bigelow HB (1927) Physical oceanography of the Gulf of Maine. Fish Bull 40:511–1027

    Google Scholar 

  • Black WAP (1950) The seasonal variation in weight and chemical composition of the common British Laminariaceae. J Mar Biol Assoc UK 29:45–72

    Article  CAS  Google Scholar 

  • Bolger TP, Upchurch DR, McMichael BL (1992) Temperature effect on cotton root hydraulic conductances. Environ Exp Bot 6:457–464

    Google Scholar 

  • Breen PA, Mann KH (1976) Destructive grazing of kelp beds by sea urchins in Eastern Canada. J Fish Res Board Can 33:1278–1283

    Article  Google Scholar 

  • Briscoe CS, Sebens KP (1988) Omnivory in Strongylocentrotus droebachiensis (Müller) (Echinodermata: Echinoidea): predation in subtidal mussels. J Exp Mar Biol Ecol 115:1–24

    Article  Google Scholar 

  • Chan JCC, Cheung PCK, Ang PO Jr (1997) Comparative studies on the effect of three drying methods on the nutritional composition of seaweed Sargassum hemiphyllum (turn.) c. ag. J Agric Food Chem 45:3056–3059

    Article  CAS  Google Scholar 

  • Chenoweth S (1992) The green sea urchin in Maine: fishery and biology benthic/demersal division. Maine Department of Marine Resources, West Boothbay harbor

    Google Scholar 

  • Chrispeels MJ, Maurel C (1994) Aquaporins: The molecular basis of facilitated water movement through living plant cells? Plant Physiol 103:9–13

    Article  Google Scholar 

  • Cook EJ, Kelly MS (2007) Effect of variation in the protein value of the red macroalga Palmaria palmata on the feeding, growth and gonad composition of the sea urchins Psammechinus miliaris and Paracentrotus lividus (Echinodermata). Aquaculture 270:207–217

    Article  CAS  Google Scholar 

  • Cranford PJ, Strain PM, Dowd M, Hargrave BT, Grant J, Archambault M-C (2007) Influence of mussel aquaculture on nitrogen dynamics in a nutrient enriched coastal embayment. Mar Ecol Prog Ser 347:61–78

    Article  CAS  Google Scholar 

  • Daggett TL, Pearce CM, Tingley M, Robinson SMC, Chopin T (2005) Effect of prepared and macroalgal diets and seed stock source on somatic growth of juvenile green sea urchins (Strongylocentrotus droebachiensis). Aquaculture 244:263–281

    Article  CAS  Google Scholar 

  • Daggett T, Pearce CM, Robinson SMC, Chopin T (2010) Does method of kelp (Saccharina latissima) storage affect its food value for promoting somatic growth of juvenile green sea urchins (Strongylocentrotus droebachiensis). J Shellfish Res 29:247–252

    Article  Google Scholar 

  • Devin MG, Peacock RJ, Stence HD (2004) Development of grow-out techniques for juvenile sea urchins Strongylocentrotus droebachiensis. In: Guzman O, Lawrence JM (eds) Sea urchins: fisheries and ecology. Lancaster, DESTech, pp 246–254

    Google Scholar 

  • Eddy SD, Brown NP, Watts SA, Kling A (2012) Growth of juvenile green sea urchins Strongylocentrotus droebachiensis fed formulated feeds with varying protein levels compared with a macroalgal diet and a commercial abalone feed. J World Aquac Soc 43:159–173

    Article  Google Scholar 

  • Eddy SD, Brown NP, Harris LG (2015a) Aquaculture of the green sea urchin in Maine, USA. In: Brown NP, Eddy SD (eds) Echinoderm aquaculture. Wiley, New York

    Google Scholar 

  • Eddy S, Camire ME, Kenn UW (2015b) Gonad yields and sensory attributes of green sea urchins following enhancement feeding with either dried kelp, fresh kelp, or formulated dried feed. Abstracts, 107th Annual Meeting National Shellfisheries Association, p 61

  • Fleurence J (1999) Seaweed protein: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–28

    Article  CAS  Google Scholar 

  • Hammer H, Watts S, Lawrence A, Lawrence J, Desmond R (2006) The effect of dietary protein on consumption, survival, growth and production of the sea urchin, Lytechinus variegatus. Aquaculture 254:483–495

    Article  CAS  Google Scholar 

  • Hatcher BG, Hatcher AI (1997) Research direction and management options for sea urchin culture in Nova Scotia. Bull Aquac Assoc Can 97:5–7

    Google Scholar 

  • James P, Siikavuopio SI (2012) The effect of continuous and intermittent feeding regimes on survival and somatic and gonadal growths of the sea urchin, Strongylocentrotus droebachiensis. Aquaculture 364–365:171–179

    Google Scholar 

  • James P, Siikavuopio SI, Mortensen A (2015) Sea urchin aquaculture in Norway. In: Brown NP, Eddy SD (eds) Echinoderm aquaculture. Wiley, New York

    Google Scholar 

  • Johnson CR, Mann KH (1982) Adaptations on Strongylocentrotus droebachiensis for survival on barren grounds in Nova Scotia. In: Lawrence JM (ed) Echinoderms: proceedings of the international conference. CRCPress/Balkema, Rotterdam, pp 277–283

    Google Scholar 

  • Kaspar HF, Gillespie PA, Boyer IC, MacKenzie AL (1985) Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sounds, New Zealand. Mar Biol 85:127–136

    Article  CAS  Google Scholar 

  • Kennedy EJ, Robinson SMC, Parsons GJ, Castell JD (1999) Somatic growth trials for juvenile green sea urchins fed prepared and natural diets. Bull Aquac Assoc Can 4:52–54

    Google Scholar 

  • Kennedy EJ, Robinson SMC, Parson GJ, Castell JD (2005) Effect of protein source and concentration on somatic growth of juvenile green sea urchins Strongylocentrotus droebachiensis. J World Aquac Soc 36(3):20–336

    Google Scholar 

  • Kling AL (2009) Effects of formulated feeds and Saccharina latissima on growth, gonadal-somatic index, and gonad color in grow-out stage green sea urchins, Strongylocentrotus droebachiensis, in land-based echinoculture. University of Maine Electronic Theses and Dissertations Paper 1459

  • Larson BR, Vadas RL, Keser M (1980) Feeding and nutritional ecology of the sea urchin Strongylocentrotus droebachiensis in Maine, USA. Mar Biol 59:49–62

    Article  Google Scholar 

  • Lawrence JM (2000) Conflict between somatic and gonadal growth in sea urchins: a review. The Workshop on the coordination of Green Sea Urchin Research in Atlantic Canada, Moncton, New Brunswick. National Sea Grant Library. Document # FLSGP-R-0-009

  • Lawrence AL, Lawrence JM (2004) Importance, status and needs for formulated feeds for sea urchin aquaculture. In: Lawrence JM, Guzman O (eds) Sea urchins: fisheries and ecology. Lancaster, DEStech, pp 275–283

    Google Scholar 

  • Lawrence JM, Lawrence AL, McBride S, George SB, Watts SA, Plank LR (2001) Developments in the use of prepared feeds in sea-urchin aquaculture. World Aquac 32:34–39

    Google Scholar 

  • Lawrence JM, Chang Y, Cao X, Lawrence AL, Watts SA (2011) Potential for production of uni by Strongylocentrotus intermedius using dry formulated feeds. J World Aquac Soc 42:253–260

    Article  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lyons DA, Scheibling RE (2007) Differences in somatic and gonadic growth of sea urchins (Strongylocentrotus droebachiensis) fed kelp (Laminaria longicruris) or the invasive alga Codium fragile ssp. tomentosoide are related to energy acquisition. Mar Biol 152:285–295

    Article  Google Scholar 

  • MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543

    Article  PubMed  Google Scholar 

  • McBride SC, Lawrence JM, Lawrence AL, Mulligan TJ (1998) The effect of protein concentration in prepared feeds on growth, feeding rate, total organic absorption, and gross assimilation efficiency of the sea urchin Strongylocentrotus franciscanus. J Shellfish Res 17:1563–1570

    Google Scholar 

  • McBride SC, Price RJ, Torn PD, Lawrence JM, Lawrence A (2004) Comparison of gonad quality factors: color, hardness and resilience, of Strongylocentrotus franciscanus between sea urchins fed prepared feed or algal diets and sea urchins harvested from the Northern California fishery. Aquaculture 223:405–422

    Article  Google Scholar 

  • Otero-Villanueva MDL, Kelly SM, Burnell G (2004) How diet influences energy partitioning in the regular echinoid Psammechinus miliaris; constructing an energy budget. J Exp Mar Biol Ecol 304:159–181

    Article  Google Scholar 

  • Patarra RF, Paiva L, Meto AI, Lima E, Baptista J (2011) Nutritional value of selected macroalgae. J Appl Phycol 23:205–208

    Article  CAS  Google Scholar 

  • Pearce CM, Daggett T, Robinson SMC (2002a) Effect of binder type and concentration on prepared feed stability and gonad yield and quality of the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture 205:301–323

    Article  Google Scholar 

  • Pearce CM, Daggett T, Robinson SMC (2002b) Optimizing prepared feed ration for gonad production of the green sea urchin Strongylocentrotus droebachiensis. J World Aquac Soc 33:268–277

    Article  Google Scholar 

  • Pearce CM, Daggett T, Robinson SMC (2004) Effect of urchin size and diet on gonad yield and quality in the green sea urchin (Strongylocentrotus droebachiensis). Aquaculture 233:337–367

    Article  Google Scholar 

  • Pearce CM, Williams SW, Yuan F, Castell JD, Robinson S (2005) Effects of temperature on somatic growth and survivorship of early post-settled green sea urchins, Strongylocentrotus droebachiensis. Aquac Res 36:600–609

    Article  Google Scholar 

  • Pettigrew NR, Churchill JH, Janzen CD, Mangum LJ, Signell RP, Thomas AC, Townsend DW, Wallinga JP, Xue H (2005) The kinematic and hydrographic structure of the Gulf of Maine Coastal Current. Deep Sea Res Part II 52:2369–2391

    Article  Google Scholar 

  • Phillips K, Bremer P, Silcock P, Hamid N, Delahunty C, Barker M, Kissick J (2009) Effect of gender, diet and storage time on the physical properties and sensory quality of sea urchin (Evechinus chloroticus) gonads. Aquaculture 288:205–215

    Article  Google Scholar 

  • Redmond S, Green L, Yarish C, Kim J, Neefus C (2014) New England seaweed culture handbook-nursery systems. Connecticut Sea Grant CTSG‐14‐01

  • Ridler N, Wowchuk M, Robinson B, Barrington K, Chopin T, Robinson SMC, Page F, Reid GK, Szemerda M, Sewuster J, Boyne-Travis S (2007) Integrated multi-trophic aquaculture (IMTA): a potential strategic choice for farmers. Aquac Econ Manag 11:99–110

    Article  Google Scholar 

  • Robinson SMC, Castell JD, Kennedy EJ (2002) Developing suitable colour in the gonads of cultured green sea urchins (Strongylocentrotus droebachiensis). Aquaculture 206:289–303

    Article  Google Scholar 

  • Schäffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204:131–139

    Article  PubMed  Google Scholar 

  • Scheibling RE, Hatcher BG (2013) Strongylocentrotus droebachiensis. In: Lawrence JM (ed) Sea urchins: biology and ecology. Academic Press, San Diego

    Google Scholar 

  • Senaratna M, Evans LH, Southam L, Tsvetnenko E (2005) Effect of different feed formulations on feed efficiency, gonad yield and gonad quality in the purple sea urchin Heliocidaris erythrogramma. Aquac Nutr 11:199–207

    Article  CAS  Google Scholar 

  • Shipgel M, McBride SC, Marciano S, Ron S, Ben-Amotz A (2005) Improving gonad colour and somatic index in the European sea urchin Paracentrotus lividus. Aquaculture 245:101–109

    Article  Google Scholar 

  • Siikavuopio SI, Dale T, Carlehög M (2007) Sensory quality of gonads from the green sea urchin, Strongylocentrotus droebachiensis, fed different diets. J Shellfish Res 26:637–643

    Article  Google Scholar 

  • Spirlet C, Grosjean P, Jangoux M (2001) Cultivation of Paracentrotus lividus (Echinodermata: Echinoidea) on extruded feeds: digestive efficiency, somatic and gonadal growth. Aquac Nutr 7:91–99

    Article  CAS  Google Scholar 

  • Suckling CC, Symonds RC, Kelly MS, Young AJ (2011) The effect of artificial diets on gonad colour and biomass in the edible sea urchin Psammechinus miliaris. Aquaculture 318:335–342

    Article  Google Scholar 

  • Sun J, Chiang F-S (2015) Exploitation of sea urchins. In: Brown NP, Eddy SD (eds) Echinoderm aquaculture. Wiley, New York

    Google Scholar 

  • Taboada C, Millian R, Miguez I (2012) Evaluation of marine algae Undaria pinnatifida and Porphyra purpurea as a food supplement: composition, nutritional value and effect of intake on intestinal, hepatic and renal enzyme activities in rats. J Sci Food Agric 93:1863–1868

    Article  Google Scholar 

  • Taylor PH (2004) Green gold: scientific findings for management of Maine’s sea urchin fishery. Maine Department of Marine Resources, Boothbay Harbor, pp 1–31

    Google Scholar 

  • Taylor AM, Powell ML, Watts SA, Lawrence AL (2009) Formulated feed supports weight gain and survivorship in juvenile sea urchins Lytechinus variegatus. J World Aquac Soc 40:780–787

    Article  Google Scholar 

  • Townsend DW, Thomas AC, Mayer LM, Thomas MA, Quinlan J (2006) Oceanography of the Northwest Atlantic Continental Shelf. In: Robinson AR, Brink KH (eds) The sea. Harvard University Press, Harvard

    Google Scholar 

  • Unuma T, Kayaba T (2015) Sea urchin aquaculture in Japan: land-based and captive sea-based grow-out (cultivation of seed to market size). In: Brown NP, Eddy SD (eds) Echinoderm aquaculture. Wiley, New York

    Google Scholar 

  • Vadas RL (1977) Preferential feeding: an optimization strategy in sea urchins. Ecol Monogr 47:337–371

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kevin Neves for feeding and tank maintenance during the later months of the study and Dr. Paul Rawson and Dr. Sara Lindsey (Univ. Maine) for assistance with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler J. Carrier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrier, T.J., Eddy, S.D. & Redmond, S. Solar-dried kelp as potential feed in sea urchin aquaculture. Aquacult Int 25, 355–366 (2017). https://doi.org/10.1007/s10499-016-0033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-016-0033-x

Keywords

Navigation