Skip to main content

Advertisement

Log in

New insights into targeting mitochondria in ischemic injury

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Stroke is the leading cause of adult disability and death worldwide. Mitochondrial dysfunction has been recognized as a marker of neuronal death during ischemic stroke. Maintaining the function of mitochondria is important for improving the survival of neurons and maintaining neuronal function. Damaged mitochondria induce neuronal cell apoptosis by releasing reactive oxygen species (ROS) and pro-apoptotic factors. Mitochondrial fission and fusion processes and mitophagy are of great importance to mitochondrial quality control. This paper reviews the dynamic changes in mitochondria, the roles of mitochondria in different cell types, and related signaling pathways in ischemic stroke. This review describes in detail the role of mitochondria in the process of neuronal injury and protection in cerebral ischemia, and integrates neuroprotective drugs targeting mitochondria in recent years, which may provide a theoretical basis for the progress of treatment of ischemic stroke. The potential of mitochondrial-targeted therapy is also emphasized, which provides valuable insights for clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adibhatla RM, Hatcher JF (2008) Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies. CNS Neurol Disord Drug Targets 7(3):243–253. https://doi.org/10.2174/187152708784936608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Henninger N, Fisher M (2016) Extending the Time Window for Endovascular and Pharmacological Reperfusion. Transl Stroke Res 7(4):284–293. https://doi.org/10.1007/s12975-015-0444-4

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Asahi M, Lo EH (1999) Tissue type plasminogen activator amplifies hemoglobin-induced neurotoxicity in rat neuronal cultures. Neurosci Lett 274(2):79–82. https://doi.org/10.1016/s0304-3940(99)00682-5

    Article  CAS  PubMed  Google Scholar 

  4. Segura T, Calleja S, Jordan J (2008) Recommendations and treatment strategies for the management of acute ischemic stroke. Expert Opin Pharmacother 9(7):1071–1085. https://doi.org/10.1517/14656566.9.7.1071

    Article  CAS  PubMed  Google Scholar 

  5. Andrabi SS, Parvez S, Tabassum H (2020) Ischemic stroke and mitochondria: mechanisms and targets. Protoplasma 257(2):335–343. https://doi.org/10.1007/s00709-019-01439-2

    Article  CAS  PubMed  Google Scholar 

  6. Yue R, Xia X, Jiang J, Yang D, Han Y, Chen X, Cai Y, Li L, Wang WE, Zeng C (2015) Mitochondrial DNA oxidative damage contributes to cardiomyocyte ischemia/reperfusion-injury in rats: cardioprotective role of lycopene. J Cell Physiol 230(9):2128–2141. https://doi.org/10.1002/jcp.24941

    Article  CAS  PubMed  Google Scholar 

  7. Crack PJ, Taylor JM (2005) Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 38(11):1433–1444. https://doi.org/10.1016/j.freeradbiomed.2005.01.019

    Article  CAS  PubMed  Google Scholar 

  8. Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279(47):49064–49073. https://doi.org/10.1074/jbc.M407715200

    Article  CAS  PubMed  Google Scholar 

  9. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13. https://doi.org/10.1042/bj20081386

    Article  CAS  PubMed  Google Scholar 

  10. Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009) Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787(11):1395–1401. https://doi.org/10.1016/j.bbabio.2009.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35(9):505–513. https://doi.org/10.1016/j.tibs.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I, Unterman T, Hay N (2008) Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14(6):458–470. https://doi.org/10.1016/j.ccr.2008.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang Y, Song Y, Loscalzo J (2007) Regulation of the protein disulfide proteome by mitochondria in mammalian cells. Proc Natl Acad Sci U S A 104(26):10813–10817. https://doi.org/10.1073/pnas.0702027104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER, Rhee SG (2004) Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci U S A 101(47):16419–16424. https://doi.org/10.1073/pnas.0407396101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5):649–661. https://doi.org/10.1016/j.cell.2004.12.041

    Article  CAS  PubMed  Google Scholar 

  16. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 95(1):316–321. https://doi.org/10.1073/pnas.95.1.316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Waagepetersen HS, Sonnewald U, Gegelashvili G, Larsson OM, Schousboe A (2001) Metabolic distinction between vesicular and cytosolic GABA in cultured GABAergic neurons using 13C magnetic resonance spectroscopy. J Neurosci Res 63(4):347–355. https://doi.org/10.1002/1097-4547(20010215)63:4%3c347::Aid-jnr1029%3e3.0.Co;2-g

    Article  CAS  PubMed  Google Scholar 

  18. Cheng A, Hou Y, Mattson MP (2010) Mitochondria and neuroplasticity. ASN Neuro 2(5):e00045. https://doi.org/10.1042/an20100019

    Article  PubMed  Google Scholar 

  19. Bakthavachalam P, Shanmugam PST (2017) Mitochondrial dysfunction - Silent killer in cerebral ischemia. J Neurol Sci 375:417–423. https://doi.org/10.1016/j.jns.2017.02.043

    Article  CAS  PubMed  Google Scholar 

  20. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  21. Twig G, Shirihai OS (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14(10):1939–1951. https://doi.org/10.1089/ars.2010.3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Westermann B (2008) Molecular machinery of mitochondrial fusion and fission. J Biol Chem 283(20):13501–13505. https://doi.org/10.1074/jbc.R800011200

    Article  CAS  PubMed  Google Scholar 

  23. Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780. https://doi.org/10.1146/annurev.biochem.76.071905.090048

    Article  CAS  PubMed  Google Scholar 

  24. Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777(9):1092–1097. https://doi.org/10.1016/j.bbabio.2008.05.001

    Article  CAS  PubMed  Google Scholar 

  25. Ono T, Isobe K, Nakada K, Hayashi JI (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28(3):272–275. https://doi.org/10.1038/90116

    Article  CAS  PubMed  Google Scholar 

  26. Anzell AR, Maizy R, Przyklenk K, Sanderson TH (2018) Mitochondrial Quality Control and Disease: Insights into Ischemia-Reperfusion Injury. Mol Neurobiol 55(3):2547–2564. https://doi.org/10.1007/s12035-017-0503-9

    Article  CAS  PubMed  Google Scholar 

  27. Song BD, Schmid SL (2003) A molecular motor or a regulator? Dynamin’s in a class of its own. Biochemistry 42(6):1369–1376. https://doi.org/10.1021/bi027062h

    Article  CAS  PubMed  Google Scholar 

  28. Boldogh IR, Pon LA (2006) Interactions of mitochondria with the actin cytoskeleton. Biochim Biophys Acta 1763(5–6):450–462. https://doi.org/10.1016/j.bbamcr.2006.02.014

    Article  CAS  PubMed  Google Scholar 

  29. Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118(Pt 23):5411–5419. https://doi.org/10.1242/jcs.02745

    Article  CAS  PubMed  Google Scholar 

  30. Amiri M, Hollenbeck PJ (2008) Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev Neurobiol 68(11):1348–1361. https://doi.org/10.1002/dneu.20668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao YX, Cui M, Chen SF, Dong Q, Liu XY (2014) Amelioration of ischemic mitochondrial injury and Bax-dependent outer membrane permeabilization by Mdivi-1. CNS Neurosci Ther 20(6):528–538. https://doi.org/10.1111/cns.12266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590. https://doi.org/10.1101/gad.1658508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu S, Zhou F, Zhang Z, Xing D (2011) Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. Febs j 278(6):941–954. https://doi.org/10.1111/j.1742-4658.2011.08010.x

    Article  CAS  PubMed  Google Scholar 

  34. de Arriba G, Calvino M, Benito S, Parra T (2013) Cyclosporine A-induced apoptosis in renal tubular cells is related to oxidative damage and mitochondrial fission. Toxicol Lett 218(1):30–38. https://doi.org/10.1016/j.toxlet.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  35. Ferrari LF, Chum A, Bogen O, Reichling DB, Levine JD (2011) Role of Drp1, a key mitochondrial fission protein, in neuropathic pain. J Neurosci 31(31):11404–11410. https://doi.org/10.1523/jneurosci.2223-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kobashigawa S, Suzuki K, Yamashita S (2011) Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells. Biochem Biophys Res Commun 414(4):795–800. https://doi.org/10.1016/j.bbrc.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  37. Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Gräber S, Kovacs I, Lee WD, Waggoner J, Cui J, White AD, Bossy B, Martinou JC, Youle RJ, Lipton SA, Ellisman MH, Perkins GA, Bossy-Wetzel E (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. Embo j 25(16):3900–3911. https://doi.org/10.1038/sj.emboj.7601253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grohm J, Kim SW, Mamrak U, Tobaben S, Cassidy-Stone A, Nunnari J, Plesnila N, Culmsee C (2012) Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ 19(9):1446–1458. https://doi.org/10.1038/cdd.2012.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee H, Yoon Y (2014) Mitochondrial fission: regulation and ER connection. Mol Cells 37(2):89–94. https://doi.org/10.14348/molcells.2014.2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282(15):11521–11529. https://doi.org/10.1074/jbc.M607279200

    Article  CAS  PubMed  Google Scholar 

  41. Qi X, Disatnik MH, Shen N, Sobel RA, Mochly-Rosen D (2011) Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol Biol Cell 22(2):256–265. https://doi.org/10.1091/mbc.E10-06-0551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Horbay R, Bilyy R (2016) Mitochondrial dynamics during cell cycling. Apoptosis 21(12):1327–1335. https://doi.org/10.1007/s10495-016-1295-5

    Article  CAS  PubMed  Google Scholar 

  43. Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, Chang BH, Schumacker PT, Danesh FR (2012) Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 15(2):186–200. https://doi.org/10.1016/j.cmet.2012.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H, Matsushita M (2008) CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182(3):573–585. https://doi.org/10.1083/jcb.200802164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang CR, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282(30):21583–21587. https://doi.org/10.1074/jbc.C700083200

    Article  CAS  PubMed  Google Scholar 

  46. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518. https://doi.org/10.1038/nrn2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 105(41):15803–15808. https://doi.org/10.1073/pnas.0808249105

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu S, Wang P, Zhang H, Gong G, Gutierrez Cortes N, Zhu W, Yoon Y, Tian R, Wang W (2016) CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun 7:13189. https://doi.org/10.1038/ncomms13189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dimmer KS, Scorrano L (2006) (De)constructing mitochondria: what for? Physiology (Bethesda) 21:233–241. https://doi.org/10.1152/physiol.00010.2006

    Article  CAS  Google Scholar 

  50. Escobar-Henriques M, Anton F (2013) Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation. Biochim Biophys Acta 1833 (1):162-175. doi:https://doi.org/10.1016/j.bbamcr.2012.07.016

  51. Benard G, Karbowski M (2009) Mitochondrial fusion and division: Regulation and role in cell viability. Semin Cell Dev Biol 20(3):365–374. https://doi.org/10.1016/j.semcdb.2008.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rojo M, Legros F, Chateau D, Lombès A (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115(Pt 8):1663–1674

    CAS  PubMed  Google Scholar 

  53. Liesa M, Palacín M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89(3):799–845. https://doi.org/10.1152/physrev.00030.2008

    Article  CAS  PubMed  Google Scholar 

  54. Chernomordik LV, Kozlov MM (2005) Membrane hemifusion: crossing a chasm in two leaps. Cell 123(3):375–382. https://doi.org/10.1016/j.cell.2005.10.015

    Article  CAS  PubMed  Google Scholar 

  55. Meglei G, McQuibban GA (2009) The dynamin-related protein Mgm1p assembles into oligomers and hydrolyzes GTP to function in mitochondrial membrane fusion. Biochemistry 48(8):1774–1784. https://doi.org/10.1021/bi801723d

    Article  CAS  PubMed  Google Scholar 

  56. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610. https://doi.org/10.1038/nature07534

    Article  CAS  PubMed  Google Scholar 

  57. Züchner S, De Jonghe P, Jordanova A, Claeys KG, Guergueltcheva V, Cherninkova S, Hamilton SR, Van Stavern G, Krajewski KM, Stajich J, Tournev I, Verhoeven K, Langerhorst CT, de Visser M, Baas F, Bird T, Timmerman V, Shy M, Vance JM (2006) Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann Neurol 59(2):276–281. https://doi.org/10.1002/ana.20797

    Article  CAS  PubMed  Google Scholar 

  58. Peng C, Rao W, Zhang L, Wang K, Hui H, Wang L, Su N, Luo P, Hao YL, Tu Y, Zhang S, Fei Z (2015) Mitofusin 2 ameliorates hypoxia-induced apoptosis via mitochondrial function and signaling pathways. Int J Biochem Cell Biol 69:29–40. https://doi.org/10.1016/j.biocel.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  59. Zhang L, He Z, Zhang Q, Wu Y, Yang X, Niu W, Hu Y, Jia J (2014) Exercise pretreatment promotes mitochondrial dynamic protein OPA1 expression after cerebral ischemia in rats. Int J Mol Sci 15(3):4453–4463. https://doi.org/10.3390/ijms15034453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve. Autophagy 4(6):740–743. https://doi.org/10.4161/auto.6398

    Article  PubMed  Google Scholar 

  61. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462(2):245–253. https://doi.org/10.1016/j.abb.2007.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang RR, Wang X, Hu WW, Wang G, Chen Z (2013) Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9(9):1321–1333. https://doi.org/10.4161/auto.25132

    Article  CAS  PubMed  Google Scholar 

  63. Luo T, Park Y, Sun X, Liu C, Hu B (2013) Protein misfolding, aggregation, and autophagy after brain ischemia. Transl Stroke Res 4(6):581–588. https://doi.org/10.1007/s12975-013-0299-5

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y, Han R, Liang ZQ, Wu JC, Zhang XD, Gu ZL, Qin ZH (2008) An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-D-aspartate receptor agonist kainic acid. Autophagy 4(2):214–226. https://doi.org/10.4161/auto.5369

    Article  CAS  PubMed  Google Scholar 

  65. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803. https://doi.org/10.1083/jcb.200809125

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chen Y, Dorn GW 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340(6131):471–475. https://doi.org/10.1126/science.1231031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wauer T, Simicek M, Schubert A, Komander D (2015) Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524(7565):370–374. https://doi.org/10.1038/nature14879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13(5):589–598. https://doi.org/10.1038/ncb2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314. https://doi.org/10.1038/nature14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu W, Lin C, Wu K, Jiang L, Wang X, Li W, Zhuang H, Zhang X, Chen H, Li S, Yang Y, Lu Y, Wang J, Zhu R, Zhang L, Sui S, Tan N, Zhao B, Zhang J, Li L, Feng D (2016) FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. Embo j 35(13):1368–1384. https://doi.org/10.15252/embj.201593102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ney PA (2015) Mitochondrial autophagy: Origins, significance, and role of BNIP3 and NIX. Biochim Biophys Acta 1853 (10 Pt B):2775-2783. doi:https://doi.org/10.1016/j.bbamcr.2015.02.022

  72. Ferrer I (2006) Apoptosis: future targets for neuroprotective strategies. Cerebrovasc Dis 21(Suppl 2):9–20. https://doi.org/10.1159/000091699

    Article  PubMed  Google Scholar 

  73. Wei H, Li Y, Han S, Liu S, Zhang N, Zhao L, Li S, Li J (2016) cPKCγ-Modulated Autophagy in Neurons Alleviates Ischemic Injury in Brain of Mice with Ischemic Stroke Through Akt-mTOR Pathway. Transl Stroke Res 7(6):497–511. https://doi.org/10.1007/s12975-016-0484-4

    Article  CAS  PubMed  Google Scholar 

  74. Galluzzi L, Kepp O, Kroemer G (2012) Mitochondria: master regulators of danger signalling. Nature Reviews Molecular Cell Biology 13(12):780–788. https://doi.org/10.1038/nrm3479

    Article  CAS  PubMed  Google Scholar 

  75. Hertz L (2008) Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 55(3):289–309. https://doi.org/10.1016/j.neuropharm.2008.05.023

    Article  CAS  PubMed  Google Scholar 

  76. Chaudhari N, Talwar P, Parimisetty A, Lefebvre d’Hellencourt C, Ravanan P (2014) A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 8:213. https://doi.org/10.3389/fncel.2014.00213

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ruiz A, Matute C, Alberdi E (2009) Endoplasmic reticulum Ca(2+) release through ryanodine and IP(3) receptors contributes to neuronal excitotoxicity. Cell Calcium 46(4):273–281. https://doi.org/10.1016/j.ceca.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  78. Webster KA (2012) Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol 8(6):863–884. https://doi.org/10.2217/fca.12.58

    Article  CAS  PubMed  Google Scholar 

  79. Liu Z, Chopp M (2016) Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 144:103–120. https://doi.org/10.1016/j.pneurobio.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  80. Benarroch EE (2005) Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 80(10):1326–1338. https://doi.org/10.4065/80.10.1326

    Article  CAS  PubMed  Google Scholar 

  81. Schousboe A, Westergaard N, Sonnewald U, Petersen SB, Yu AC, Hertz L (1992) Regulatory role of astrocytes for neuronal biosynthesis and homeostasis of glutamate and GABA. Prog Brain Res 94:199–211. https://doi.org/10.1016/s0079-6123(08)61751-3

    Article  CAS  PubMed  Google Scholar 

  82. Takano T, Oberheim N, Cotrina ML, Nedergaard M (2009) Astrocytes and ischemic injury. Stroke 40(3 Suppl):S8-12. https://doi.org/10.1161/strokeaha.108.533166

    Article  PubMed  Google Scholar 

  83. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410. https://doi.org/10.1523/jneurosci.6221-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rouach N, Glowinski J, Giaume C (2000) Activity-dependent neuronal control of gap-junctional communication in astrocytes. J Cell Biol 149(7):1513–1526. https://doi.org/10.1083/jcb.149.7.1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rose CR, Ransom BR (1997) Gap junctions equalize intracellular Na+ concentration in astrocytes. Glia 20(4):299–307. https://doi.org/10.1002/(sici)1098-1136(199708)20:4%3c299::aid-glia3%3e3.0.co;2-1

    Article  CAS  PubMed  Google Scholar 

  86. Dong QP, He JQ, Chai Z (2013) Astrocytic Ca(2+) waves mediate activation of extrasynaptic NMDA receptors in hippocampal neurons to aggravate brain damage during ischemia. Neurobiol Dis 58:68–75. https://doi.org/10.1016/j.nbd.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  87. Martínez AD, Sáez JC (2000) Regulation of astrocyte gap junctions by hypoxia-reoxygenation. Brain Res Brain Res Rev 32(1):250–258. https://doi.org/10.1016/s0165-0173(99)00086-7

    Article  PubMed  Google Scholar 

  88. Miao Y, Qiu Y, Lin Y, Miao Z, Zhang J, Lu X (2011) Protection by pyruvate against glutamate neurotoxicity is mediated by astrocytes through a glutathione-dependent mechanism. Mol Biol Rep 38(5):3235–3242. https://doi.org/10.1007/s11033-010-9998-0

    Article  CAS  PubMed  Google Scholar 

  89. Xu L, Emery JF, Ouyang YB, Voloboueva LA, Giffard RG (2010) Astrocyte targeted overexpression of Hsp72 or SOD2 reduces neuronal vulnerability to forebrain ischemia. Glia 58(9):1042–1049. https://doi.org/10.1002/glia.20985

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG (2007) Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27(16):4253–4260. https://doi.org/10.1523/jneurosci.0211-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535(7613):551–555. https://doi.org/10.1038/nature18928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. An J, Haile WB, Wu F, Torre E, Yepes M (2014) Tissue-type plasminogen activator mediates neuroglial coupling in the central nervous system. Neuroscience 257:41–48. https://doi.org/10.1016/j.neuroscience.2013.10.060

    Article  CAS  PubMed  Google Scholar 

  93. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27(11):1766–1791. https://doi.org/10.1038/sj.jcbfm.9600521

    Article  CAS  PubMed  Google Scholar 

  94. Amato S, Man HY (2011) Bioenergy sensing in the brain: the role of AMP-activated protein kinase in neuronal metabolism, development and neurological diseases. Cell Cycle 10(20):3452–3460. https://doi.org/10.4161/cc.10.20.17953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Benakis C, Garcia-Bonilla L, Iadecola C, Anrather J (2014) The role of microglia and myeloid immune cells in acute cerebral ischemia. Front Cell Neurosci 8:461. https://doi.org/10.3389/fncel.2014.00461

    Article  PubMed  Google Scholar 

  96. Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N (2016) Electron transport chain inhibitors induce microglia activation through enhancing mitochondrial reactive oxygen species production. Exp Cell Res 340(2):315–326. https://doi.org/10.1016/j.yexcr.2015.10.026

    Article  CAS  PubMed  Google Scholar 

  97. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35. https://doi.org/10.1038/nri978

    Article  CAS  PubMed  Google Scholar 

  98. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45. https://doi.org/10.1186/1742-2094-5-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kapellos TS, Taylor L, Lee H, Cowley SA, James WS, Iqbal AJ, Greaves DR (2016) A novel real time imaging platform to quantify macrophage phagocytosis. Biochem Pharmacol 116:107–119. https://doi.org/10.1016/j.bcp.2016.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bordt EA, Polster BM (2014) NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? Free Radic Biol Med 76:34–46. https://doi.org/10.1016/j.freeradbiomed.2014.07.033

    Article  CAS  PubMed  Google Scholar 

  101. Zhang J, Malik A, Choi HB, Ko RW, Dissing-Olesen L, MacVicar BA (2014) Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. Neuron 82(1):195–207. https://doi.org/10.1016/j.neuron.2014.01.043

    Article  CAS  PubMed  Google Scholar 

  102. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. https://doi.org/10.1038/nrn2038

    Article  CAS  PubMed  Google Scholar 

  103. Wang J, Xing H, Wan L, Jiang X, Wang C, Wu Y (2018) Treatment targets for M2 microglia polarization in ischemic stroke. Biomed Pharmacother 105:518–525. https://doi.org/10.1016/j.biopha.2018.05.143

    Article  CAS  PubMed  Google Scholar 

  104. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225. https://doi.org/10.1038/nature09663

    Article  CAS  PubMed  Google Scholar 

  105. Lei Q, Tan J, Yi S, Wu N, Wang Y, Wu H (2018) Mitochonic acid 5 activates the MAPK-ERK-yap signaling pathways to protect mouse microglial BV-2 cells against TNFα-induced apoptosis via increased Bnip3-related mitophagy. Cell Mol Biol Lett 23:14. https://doi.org/10.1186/s11658-018-0081-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C, Chemali M, Fazel A, Bergeron JJ, Trudeau LE, Burelle Y, Gagnon E, McBride HM, Desjardins M (2016) Parkinson’s Disease-Related Proteins PINK1 and Parkin Repress Mitochondrial Antigen Presentation. Cell 166(2):314–327. https://doi.org/10.1016/j.cell.2016.05.039

    Article  CAS  PubMed  Google Scholar 

  107. Strazielle N, Ghersi-Egea JF (2013) Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 10(5):1473–1491. https://doi.org/10.1021/mp300518e

    Article  CAS  PubMed  Google Scholar 

  108. Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163–164:144–171. https://doi.org/10.1016/j.pneurobio.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  109. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V (2007) Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 6(3):258–268. https://doi.org/10.1016/s1474-4422(07)70055-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rayasam A, Hsu M, Kijak JA, Kissel L, Hernandez G, Sandor M, Fabry Z (2018) Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures? Immunology 154(3):363–376. https://doi.org/10.1111/imm.12918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Moroni F (2008) Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain damage. Curr Opin Pharmacol 8(1):96–103. https://doi.org/10.1016/j.coph.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  112. Zhang Y, Park TS, Gidday JM (2007) Hypoxic preconditioning protects human brain endothelium from ischemic apoptosis by Akt-dependent survivin activation. Am J Physiol Heart Circ Physiol 292(6):H2573-2581. https://doi.org/10.1152/ajpheart.01098.2006

    Article  CAS  PubMed  Google Scholar 

  113. Dong H, Zhou W, Xin J, Shi H, Yao X, He Z, Wang Z (2019) Salvinorin A moderates postischemic brain injury by preserving endothelial mitochondrial function via AMPK/Mfn2 activation. Exp Neurol 322:113045. https://doi.org/10.1016/j.expneurol.2019.113045

    Article  CAS  PubMed  Google Scholar 

  114. Chen T, Dai SH, Li X, Luo P, Zhu J, Wang YH, Fei Z, Jiang XF (2018) Sirt1-Sirt3 axis regulates human blood-brain barrier permeability in response to ischemia. Redox Biol 14:229–236. https://doi.org/10.1016/j.redox.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  115. Ruan L, Wang B, ZhuGe Q, Jin K (2015) Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res 1623:166–173. https://doi.org/10.1016/j.brainres.2015.02.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436(7048):193–200. https://doi.org/10.1038/nature03875

    Article  CAS  PubMed  Google Scholar 

  117. Grade S, Weng YC, Snapyan M, Kriz J, Malva JO, Saghatelyan A (2013) Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum. PLoS One 8(1):e55039. https://doi.org/10.1371/journal.pone.0055039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fujioka T, Kaneko N, Ajioka I, Nakaguchi K, Omata T, Ohba H, Fässler R, García-Verdugo JM, Sekiguchi K, Matsukawa N, Sawamoto K (2017) β1 integrin signaling promotes neuronal migration along vascular scaffolds in the post-stroke brain. EBioMedicine 16:195–203. https://doi.org/10.1016/j.ebiom.2017.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  119. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106. https://doi.org/10.1152/physiol.00045.2008

    Article  CAS  Google Scholar 

  120. Ziello JE, Jovin IS, Huang Y (2007) Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med 80(2):51–60

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Malhotra D, Portales-Casamar E, Singh A, Srivastava S, Arenillas D, Happel C, Shyr C, Wakabayashi N, Kensler TW, Wasserman WW, Biswal S (2010) Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res 38(17):5718–5734. https://doi.org/10.1093/nar/gkq212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13(1):76–86. https://doi.org/10.1101/gad.13.1.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88(Pt B):179–188. https://doi.org/10.1016/j.freeradbiomed.2015.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Holmström KM, Baird L, Zhang Y, Hargreaves I, Chalasani A, Land JM, Stanyer L, Yamamoto M, Dinkova-Kostova AT, Abramov AY (2013) Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biology Open 2(8):761. https://doi.org/10.1242/bio.20134853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Itoh K, Ye P, Matsumiya T, Tanji K, Ozaki T (2015) Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. Journal of Clinical Biochemistry and Nutrition 56(2):91–97. https://doi.org/10.3164/jcbn.14-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gibson CJ, Davids MS (2015) BCL-2 Antagonism to Target the Intrinsic Mitochondrial Pathway of Apoptosis. Clin Cancer Res 21(22):5021–5029. https://doi.org/10.1158/1078-0432.Ccr-15-0364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Green DR (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell 102(1):1–4. https://doi.org/10.1016/s0092-8674(00)00003-9

    Article  CAS  PubMed  Google Scholar 

  128. Yang Y, Yu Y, Wang J, Li Y, Li Y, Wei J, Zheng T, Jin M, Sun Z (2017) Silica nanoparticles induced intrinsic apoptosis in neuroblastoma SH-SY5Y cells via CytC/Apaf-1 pathway. Environ Toxicol Pharmacol 52:161–169. https://doi.org/10.1016/j.etap.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  129. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303):1132–1136. https://doi.org/10.1126/science.275.5303.1132

    Article  CAS  PubMed  Google Scholar 

  130. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91(5):627–637. https://doi.org/10.1016/s0092-8674(00)80450-x

    Article  CAS  PubMed  Google Scholar 

  131. Jürgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A 95(9):4997–5002. https://doi.org/10.1073/pnas.95.9.4997

    Article  PubMed  PubMed Central  Google Scholar 

  132. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94(4):491–501. https://doi.org/10.1016/s0092-8674(00)81590-1

    Article  CAS  PubMed  Google Scholar 

  133. Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14(16):2060–2071

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhou J, Du T, Li B, Rong Y, Verkhratsky A, Peng L (2015) Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion. ASN Neuro 7 (5). doi:https://doi.org/10.1177/1759091415602463

  135. Kawano T, Morioka M, Yano S, Hamada J, Ushio Y, Miyamoto E, Fukunaga K (2002) Decreased akt activity is associated with activation of forkhead transcription factor after transient forebrain ischemia in gerbil hippocampus. J Cereb Blood Flow Metab 22(8):926–934. https://doi.org/10.1097/00004647-200208000-00004

    Article  CAS  PubMed  Google Scholar 

  136. Xing XS, Liu F, He ZY (2015) Akt regulates β-catenin in a rat model of focal cerebral ischemia-reperfusion injury. Mol Med Rep 11(4):3122–3128. https://doi.org/10.3892/mmr.2014.3000

    Article  CAS  PubMed  Google Scholar 

  137. Ban K, Peng Z, Kozar RA (2013) Inhibition of ERK1/2 worsens intestinal ischemia/reperfusion injury. PLoS One 8(9):e76790. https://doi.org/10.1371/journal.pone.0076790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dhandapani KM, Brann DW (2003) Transforming growth factor-beta: a neuroprotective factor in cerebral ischemia. Cell Biochem Biophys 39(1):13–22. https://doi.org/10.1385/cbb:39:1:13

    Article  CAS  PubMed  Google Scholar 

  139. Buisson A, Lesne S, Docagne F, Ali C, Nicole O, MacKenzie ET, Vivien D (2003) Transforming growth factor-beta and ischemic brain injury. Cell Mol Neurobiol 23(4–5):539–550. https://doi.org/10.1023/a:1025072013107

    Article  CAS  PubMed  Google Scholar 

  140. Ridder DA, Schwaninger M (2009) NF-kappaB signaling in cerebral ischemia. Neuroscience 158(3):995–1006. https://doi.org/10.1016/j.neuroscience.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  141. Inta I, Paxian S, Maegele I, Zhang W, Pizzi M, Spano P, Sarnico I, Muhammad S, Herrmann O, Inta D, Baumann B, Liou HC, Schmid RM, Schwaninger M (2006) Bim and Noxa are candidates to mediate the deleterious effect of the NF-kappa B subunit RelA in cerebral ischemia. J Neurosci 26(50):12896–12903. https://doi.org/10.1523/jneurosci.3670-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453(7196):807–811. https://doi.org/10.1038/nature06905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Herrmann O, Baumann B, de Lorenzi R, Muhammad S, Zhang W, Kleesiek J, Malfertheiner M, Köhrmann M, Potrovita I, Maegele I, Beyer C, Burke JR, Hasan MT, Bujard H, Wirth T, Pasparakis M, Schwaninger M (2005) IKK mediates ischemia-induced neuronal death. Nat Med 11(12):1322–1329. https://doi.org/10.1038/nm1323

    Article  CAS  PubMed  Google Scholar 

  144. Kim GS, Jung JE, Narasimhan P, Sakata H, Yoshioka H, Song YS, Okami N, Chan PH (2012) Release of mitochondrial apoptogenic factors and cell death are mediated by CK2 and NADPH oxidase. J Cereb Blood Flow Metab 32(4):720–730. https://doi.org/10.1038/jcbfm.2011.176

    Article  CAS  PubMed  Google Scholar 

  145. Mandal T, Bhowmik A, Chatterjee A, Chatterjee U, Chatterjee S, Ghosh MK (2014) Reduced phosphorylation of Stat3 at Ser-727 mediated by casein kinase 2 - protein phosphatase 2A enhances Stat3 Tyr-705 induced tumorigenic potential of glioma cells. Cell Signal 26(8):1725–1734. https://doi.org/10.1016/j.cellsig.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  146. Jung JE, Kim GS, Chan PH (2011) Neuroprotection by interleukin-6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke. Stroke 42(12):3574–3579. https://doi.org/10.1161/strokeaha.111.626648

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chao CC, Ma YL, Lee EH (2011) Brain-derived neurotrophic factor enhances Bcl-xL expression through protein kinase casein kinase 2-activated and nuclear factor kappa B-mediated pathway in rat hippocampus. Brain Pathol 21(2):150–162. https://doi.org/10.1111/j.1750-3639.2010.00431.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Afonyushkin T, Oskolkova OV, Binder BR, Bochkov VN (2011) Involvement of CK2 in activation of electrophilic genes in endothelial cells by oxidized phospholipids. J Lipid Res 52(1):98–103. https://doi.org/10.1194/jlr.M009480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Baltan S, Bastian C, Quinn J, Aquila D, McCray A, Brunet S (2018) CK2 inhibition protects white matter from ischemic injury. Neurosci Lett 687:37–42. https://doi.org/10.1016/j.neulet.2018.08.021

    Article  CAS  PubMed  Google Scholar 

  150. Bastian C, Quinn J, Tripathi A, Aquila D, McCray A, Dutta R, Baltan S, Brunet S (2019) CK2 inhibition confers functional protection to young and aging axons against ischemia by differentially regulating the CDK5 and AKT signaling pathways. Neurobiol Dis 126:47–61. https://doi.org/10.1016/j.nbd.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  151. Meyer DA, Torres-Altoro MI, Tan Z, Tozzi A, Di Filippo M, DiNapoli V, Plattner F, Kansy JW, Benkovic SA, Huber JD, Miller DB, Greengard P, Calabresi P, Rosen CL, Bibb JA (2014) Ischemic stroke injury is mediated by aberrant Cdk5. J Neurosci 34(24):8259–8267. https://doi.org/10.1523/jneurosci.4368-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  152. Tan X, Chen Y, Li J, Li X, Miao Z, Xin N, Zhu J, Ge W, Feng Y, Xu X (2015) The inhibition of Cdk5 activity after hypoxia/ischemia injury reduces infarct size and promotes functional recovery in neonatal rats. Neuroscience 290:552–560. https://doi.org/10.1016/j.neuroscience.2015.01.054

    Article  CAS  PubMed  Google Scholar 

  153. Wacquier B, Combettes L, Dupont G (2019) Cytoplasmic and Mitochondrial Calcium Signaling: A Two-Way Relationship. Cold Spring Harb Perspect Biol 11 (10). doi:https://doi.org/10.1101/cshperspect.a035139

  154. Bhosale G, Sharpe JA, Sundier SY, Duchen MR (2015) Calcium signaling as a mediator of cell energy demand and a trigger to cell death. Ann N Y Acad Sci 1350(1):107–116. https://doi.org/10.1111/nyas.12885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kowaltowski AJ, Menezes-Filho SL, Assali EA, Gonçalves IG, Cabral-Costa JV, Abreu P, Miller N, Nolasco P, Laurindo FRM, Bruni-Cardoso A, Shirihai OS (2019) Mitochondrial morphology regulates organellar Ca(2+) uptake and changes cellular Ca(2+) homeostasis. Faseb j 33(12):13176–13188. https://doi.org/10.1096/fj.201901136R

    Article  CAS  PubMed  Google Scholar 

  156. Stys PK, Waxman SG, Ransom BR (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci 12(2):430–439. https://doi.org/10.1523/jneurosci.12-02-00430.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Imahashi K, Kusuoka H, Hashimoto K, Yoshioka J, Yamaguchi H, Nishimura T (1999) Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res 84(12):1401–1406. https://doi.org/10.1161/01.res.84.12.1401

    Article  CAS  PubMed  Google Scholar 

  158. Brustovetsky T, Bolshakov A, Brustovetsky N (2010) Calpain activation and Na+/Ca2+ exchanger degradation occur downstream of calcium deregulation in hippocampal neurons exposed to excitotoxic glutamate. J Neurosci Res 88(6):1317–1328. https://doi.org/10.1002/jnr.22295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bano D, Nicotera P (2007) Ca2+ signals and neuronal death in brain ischemia. Stroke 38(2 Suppl):674–676. https://doi.org/10.1161/01.Str.0000256294.46009.29

    Article  CAS  PubMed  Google Scholar 

  160. Polster BM (2013) AIF, reactive oxygen species, and neurodegeneration: a “complex” problem. Neurochem Int 62(5):695–702. https://doi.org/10.1016/j.neuint.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  161. Bolaños JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1411(2–3):415–436. https://doi.org/10.1016/s0005-2728(99)00030-4

    Article  PubMed  Google Scholar 

  162. Forman LJ, Liu P, Nagele RG, Yin K, Wong PY (1998) Augmentation of nitric oxide, superoxide, and peroxynitrite production during cerebral ischemia and reperfusion in the rat. Neurochem Res 23(2):141–148. https://doi.org/10.1023/a:1022468522564

    Article  CAS  PubMed  Google Scholar 

  163. Narendra D, Walker JE, Youle R (2012) Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 4 (11). doi:https://doi.org/10.1101/cshperspect.a011338

  164. Di Sante G, Pestell TG, Casimiro MC, Bisetto S, Powell MJ, Lisanti MP, Cordon-Cardo C, Castillo-Martin M, Bonal DM, Debattisti V, Chen K, Wang L, He X, McBurney MW, Pestell RG (2015) Loss of Sirt1 promotes prostatic intraepithelial neoplasia, reduces mitophagy, and delays PARK2 translocation to mitochondria. Am J Pathol 185(1):266–279. https://doi.org/10.1016/j.ajpath.2014.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Elmore SP, Qian T, Grissom SF, Lemasters JJ (2001) The mitochondrial permeability transition initiates autophagy in rat hepatocytes. Faseb j 15(12):2286–2287. https://doi.org/10.1096/fj.01-0206fje

    Article  CAS  PubMed  Google Scholar 

  166. Solesio ME, Saez-Atienzar S, Jordan J, Galindo MF (2013) 3-Nitropropionic acid induces autophagy by forming mitochondrial permeability transition pores rather than activating the mitochondrial fission pathway. Br J Pharmacol 168(1):63–75. https://doi.org/10.1111/j.1476-5381.2012.01994.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cui T, Fan C, Gu L, Gao H, Liu Q, Zhang T, Qi Z, Zhao C, Zhao H, Cai Q, Yang H (2011) Silencing of PINK1 induces mitophagy via mitochondrial permeability transition in dopaminergic MN9D cells. Brain Res 1394:1–13. https://doi.org/10.1016/j.brainres.2011.01.035

    Article  CAS  PubMed  Google Scholar 

  168. Gustafsson AB (2011) Bnip3 as a dual regulator of mitochondrial turnover and cell death in the myocardium. Pediatr Cardiol 32(3):267–274. https://doi.org/10.1007/s00246-010-9876-5

    Article  PubMed  PubMed Central  Google Scholar 

  169. Zuo W, Yang PF, Chen J, Zhang Z, Chen NH (2016) Drp-1, a potential therapeutic target for brain ischaemic stroke. Br J Pharmacol 173(10):1665–1677. https://doi.org/10.1111/bph.13468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zuo W, Zhang S, Xia CY, Guo XF, He WB, Chen NH (2014) Mitochondria autophagy is induced after hypoxic/ischemic stress in a Drp1 dependent manner: the role of inhibition of Drp1 in ischemic brain damage. Neuropharmacology 86:103–115. https://doi.org/10.1016/j.neuropharm.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  171. Yu W, Sun Y, Guo S, Lu B (2011) The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet 20(16):3227–3240. https://doi.org/10.1093/hmg/ddr235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Feng J, Chen X, Guan B, Li C, Qiu J, Shen J (2018) Inhibition of Peroxynitrite-Induced Mitophagy Activation Attenuates Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 55(8):6369–6386. https://doi.org/10.1007/s12035-017-0859-x

    Article  CAS  PubMed  Google Scholar 

  173. Wang W, Karamanlidis G, Tian R (2016) Novel targets for mitochondrial medicine. Sci Transl Med 8 (326):326rv323. doi:https://doi.org/10.1126/scitranslmed.aac7410

  174. Cui M, Ding H, Chen F, Zhao Y, Yang Q, Dong Q (2016) Mdivi-1 Protects Against Ischemic Brain Injury via Elevating Extracellular Adenosine in a cAMP/CREB-CD39-Dependent Manner. Mol Neurobiol 53(1):240–253. https://doi.org/10.1007/s12035-014-9002-4

    Article  CAS  PubMed  Google Scholar 

  175. Gao D, Zhang L, Dhillon R, Hong TT, Shaw RM, Zhu J (2013) Dynasore protects mitochondria and improves cardiac lusitropy in Langendorff perfused mouse heart. PLoS One 8(4):e60967. https://doi.org/10.1371/journal.pone.0060967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Qi X, Qvit N, Su YC, Mochly-Rosen D (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 126(Pt 3):789–802. https://doi.org/10.1242/jcs.114439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y, Taguchi N, Morinaga H, Maeda M, Takayanagi R, Yokota S, Mihara K (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11(8):958–966. https://doi.org/10.1038/ncb1907

    Article  CAS  PubMed  Google Scholar 

  178. Elachouri G, Vidoni S, Zanna C, Pattyn A, Boukhaddaoui H, Gaget K, Yu-Wai-Man P, Gasparre G, Sarzi E, Delettre C, Olichon A, Loiseau D, Reynier P, Chinnery PF, Rotig A, Carelli V, Hamel CP, Rugolo M, Lenaers G (2011) OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res 21(1):12–20. https://doi.org/10.1101/gr.108696.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Szabo A, Sumegi K, Fekete K, Hocsak E, Debreceni B, Setalo G Jr, Kovacs K, Deres L, Kengyel A, Kovacs D, Mandl J, Nyitrai M, Febbraio MA, Gallyas F Jr, Sumegi B (2018) Activation of mitochondrial fusion provides a new treatment for mitochondria-related diseases. Biochem Pharmacol 150:86–96. https://doi.org/10.1016/j.bcp.2018.01.038

    Article  CAS  PubMed  Google Scholar 

  180. Smith MA, Schnellmann RG (2012) Calpains, mitochondria, and apoptosis. Cardiovasc Res 96(1):32–37. https://doi.org/10.1093/cvr/cvs163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291(6):C1159-1171. https://doi.org/10.1152/ajpcell.00207.2006

    Article  CAS  PubMed  Google Scholar 

  182. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8(10):1124–1132. https://doi.org/10.1038/ncb1482

    Article  CAS  PubMed  Google Scholar 

  183. Ono Y, Saido TC, Sorimachi H (2016) Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 15(12):854–876. https://doi.org/10.1038/nrd.2016.212

    Article  CAS  PubMed  Google Scholar 

  184. Yokota M, Tani E, Tsubuki S, Yamaura I, Nakagaki I, Hori S, Saido TC (1999) Calpain inhibitor entrapped in liposome rescues ischemic neuronal damage. Brain Res 819(1–2):8–14. https://doi.org/10.1016/s0006-8993(98)01334-1

    Article  CAS  PubMed  Google Scholar 

  185. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14(8):1505–1517. https://doi.org/10.1089/ars.2010.3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Coucha M, Li W, Hafez S, Abdelsaid M, Johnson MH, Fagan SC, Ergul A (2015) SOD1 overexpression prevents acute hyperglycemia-induced cerebral myogenic dysfunction: relevance to contralateral hemisphere and stroke outcomes. Am J Physiol Heart Circ Physiol 308(5):H456-466. https://doi.org/10.1152/ajpheart.00321.2014

    Article  CAS  PubMed  Google Scholar 

  187. Muscoli C, Cuzzocrea S, Riley DP, Zweier JL, Thiemermann C, Wang ZQ, Salvemini D (2003) On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies. Br J Pharmacol 140(3):445–460. https://doi.org/10.1038/sj.bjp.0705430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wen Y, Li W, Poteet EC, Xie L, Tan C, Yan LJ, Ju X, Liu R, Qian H, Marvin MA, Goldberg MS, She H, Mao Z, Simpkins JW, Yang SH (2011) Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem 286(18):16504–16515. https://doi.org/10.1074/jbc.M110.208447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Huang S, Du F, Shih YY, Shen Q, Gonzalez-Lima F, Duong TQ (2013) Methylene blue potentiates stimulus-evoked fMRI responses and cerebral oxygen consumption during normoxia and hypoxia. Neuroimage 72:237–242. https://doi.org/10.1016/j.neuroimage.2013.01.027

    Article  CAS  PubMed  Google Scholar 

  190. Poteet E, Winters A, Yan LJ, Shufelt K, Green KN, Simpkins JW, Wen Y, Yang SH (2012) Neuroprotective actions of methylene blue and its derivatives. PLoS One 7(10):e48279. https://doi.org/10.1371/journal.pone.0048279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sheu SS, Nauduri D, Anders MW (2006) Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta 1762(2):256–265. https://doi.org/10.1016/j.bbadis.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  192. McManus MJ, Murphy MP, Franklin JL (2014) Mitochondria-derived reactive oxygen species mediate caspase-dependent and -independent neuronal deaths. Mol Cell Neurosci 63:13–23. https://doi.org/10.1016/j.mcn.2014.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Smith RA, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100(9):5407–5412. https://doi.org/10.1073/pnas.0931245100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB (2009) An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 1787(5):437–461. https://doi.org/10.1016/j.bbabio.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  195. Hu Q, Ren J, Li G, Wu J, Wu X, Wang G, Gu G, Ren H, Hong Z, Li J (2018) The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway. Cell Death Dis 9(3):403. https://doi.org/10.1038/s41419-018-0436-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Zhao Y, Lee JH, Chen D, Gu X, Caslin A, Li J, Yu SP, Wei L (2017) DL-3-n-butylphthalide induced neuroprotection, regenerative repair, functional recovery and psychological benefits following traumatic brain injury in mice. Neurochem Int 111:82–92. https://doi.org/10.1016/j.neuint.2017.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wen XR, Tang M, Qi DS, Huang XJ, Liu HZ, Zhang F, Wu J, Wang YW, Zhang XB, Guo JQ, Wang SL, Liu Y, Wang YL, Song YJ (2016) Butylphthalide Suppresses Neuronal Cells Apoptosis and Inhibits JNK-Caspase3 Signaling Pathway After Brain Ischemia /Reperfusion in Rats. Cell Mol Neurobiol 36(7):1087–1095. https://doi.org/10.1007/s10571-015-0302-7

    Article  CAS  PubMed  Google Scholar 

  198. Li J, Li Y, Ogle M, Zhou X, Song M, Yu SP, Wei L (2010) DL-3-n-butylphthalide prevents neuronal cell death after focal cerebral ischemia in mice via the JNK pathway. Brain Res 1359:216–226. https://doi.org/10.1016/j.brainres.2010.08.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Chen N, Zhou Z, Li J, Li B, Feng J, He D, Luo Y, Zheng X, Luo J, Zhang J (2018) 3-n-butylphthalide exerts neuroprotective effects by enhancing anti-oxidation and attenuating mitochondrial dysfunction in an in vitro model of ischemic stroke. Drug Des Devel Ther 12:4261–4271. https://doi.org/10.2147/dddt.S189472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yin W, Lan L, Huang Z, Ji J, Fang J, Wang X, Ji H, Peng S, Xu J, Zhang Y (2016) Discovery of a ring-opened derivative of 3-n-butylphthalide bearing NO/H2S-donating moieties as a potential anti-ischemic stroke agent. Eur J Med Chem 115:369–380. https://doi.org/10.1016/j.ejmech.2016.03.044

    Article  CAS  PubMed  Google Scholar 

  201. Zhang P, Guo ZF, Xu YM, Li YS, Song JG (2016) N-Butylphthalide (NBP) ameliorated cerebral ischemia reperfusion-induced brain injury via HGF-regulated TLR4/NF-κB signaling pathway. Biomed Pharmacother 83:658–666. https://doi.org/10.1016/j.biopha.2016.07.040

    Article  CAS  PubMed  Google Scholar 

  202. Yang CS, Guo A, Li Y, Shi K, Shi FD, Li M (2019) Dl-3-n-butylphthalide Reduces Neurovascular Inflammation and Ischemic Brain Injury in Mice. Aging Dis 10(5):964–976. https://doi.org/10.14336/ad.2019.0608

    Article  PubMed  PubMed Central  Google Scholar 

  203. Bazan NG (2018) Docosanoids and elovanoids from omega-3 fatty acids are pro-homeostatic modulators of inflammatory responses, cell damage and neuroprotection. Mol Aspects Med 64:18–33. https://doi.org/10.1016/j.mam.2018.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Belayev L, Khoutorova L, Atkins KD, Eady TN, Hong S, Lu Y, Obenaus A, Bazan NG (2011) Docosahexaenoic Acid therapy of experimental ischemic stroke. Transl Stroke Res 2(1):33–41. https://doi.org/10.1007/s12975-010-0046-0

    Article  CAS  PubMed  Google Scholar 

  205. Mayurasakorn K, Niatsetskaya ZV, Sosunov SA, Williams JJ, Zirpoli H, Vlasakov I, Deckelbaum RJ, Ten VS (2016) DHA but Not EPA Emulsions Preserve Neurological and Mitochondrial Function after Brain Hypoxia-Ischemia in Neonatal Mice. PLoS One 11(8):e0160870. https://doi.org/10.1371/journal.pone.0160870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Scott E, Zhang QG, Wang R, Vadlamudi R, Brann D (2012) Estrogen neuroprotection and the critical period hypothesis. Front Neuroendocrinol 33(1):85–104. https://doi.org/10.1016/j.yfrne.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  207. Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell CJ, Roger V, Rumsfeld J, Sorlie P, Steinberger J, Thom T, Wasserthiel-Smoller S, Hong Y (2007) Heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115(5):e69-171. https://doi.org/10.1161/circulationaha.106.179918

    Article  PubMed  Google Scholar 

  208. Guo H, Liu M, Zhang L, Wang L, Hou W, Ma Y, Ma Y (2020) The critical period for neuroprotection by estrogen replacement therapy and the potential underlying mechanisms. Curr Neuropharmacol. https://doi.org/10.2174/1570159x18666200123165652

    Article  PubMed  PubMed Central  Google Scholar 

  209. Rau SW, Dubal DB, Böttner M, Gerhold LM, Wise PM (2003) Estradiol attenuates programmed cell death after stroke-like injury. J Neurosci 23(36):11420–11426. https://doi.org/10.1523/jneurosci.23-36-11420.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wu TW, Wang JM, Chen S, Brinton RD (2005) 17Beta-estradiol induced Ca2+ influx via L-type calcium channels activates the Src/ERK/cyclic-AMP response element binding protein signal pathway and BCL-2 expression in rat hippocampal neurons: a potential initiation mechanism for estrogen-induced neuroprotection. Neuroscience 135(1):59–72. https://doi.org/10.1016/j.neuroscience.2004.12.027

    Article  CAS  PubMed  Google Scholar 

  211. Dubal DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I, Kindy MS, Wise PM (2001) Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci U S A 98(4):1952–1957. https://doi.org/10.1073/pnas.041483198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Merchenthaler I, Dellovade TL, Shughrue PJ (2003) Neuroprotection by estrogen in animal models of global and focal ischemia. Ann N Y Acad Sci 1007:89–100. https://doi.org/10.1196/annals.1286.009

    Article  CAS  PubMed  Google Scholar 

  213. Elzer JG, Muhammad S, Wintermantel TM, Regnier-Vigouroux A, Ludwig J, Schütz G, Schwaninger M (2010) Neuronal estrogen receptor-alpha mediates neuroprotection by 17beta-estradiol. J Cereb Blood Flow Metab 30(5):935–942. https://doi.org/10.1038/jcbfm.2009.258

    Article  CAS  PubMed  Google Scholar 

  214. Azcoitia I, Santos-Galindo M, Arevalo MA, Garcia-Segura LM (2010) Role of astroglia in the neuroplastic and neuroprotective actions of estradiol. Eur J Neurosci 32(12):1995–2002. https://doi.org/10.1111/j.1460-9568.2010.07516.x

    Article  PubMed  Google Scholar 

  215. Brinton RD (2005) Investigative models for determining hormone therapy-induced outcomes in brain: evidence in support of a healthy cell bias of estrogen action. Ann N Y Acad Sci 1052:57–74. https://doi.org/10.1196/annals.1347.005

    Article  CAS  PubMed  Google Scholar 

  216. Brinton RD (2008) The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends Neurosci 31(10):529–537. https://doi.org/10.1016/j.tins.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  217. Santen RJ, Allred DC, Ardoin SP, Archer DF, Boyd N, Braunstein GD, Burger HG, Colditz GA, Davis SR, Gambacciani M, Gower BA, Henderson VW, Jarjour WN, Karas RH, Kleerekoper M, Lobo RA, Manson JE, Marsden J, Martin KA, Martin L, Pinkerton JV, Rubinow DR, Teede H, Thiboutot DM, Utian WH (2010) Postmenopausal hormone therapy: an Endocrine Society scientific statement. J Clin Endocrinol Metab 95(7 Suppl 1):s1–s66. https://doi.org/10.1210/jc.2009-2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lee JY, Xu K, Nguyen H, Guedes VA, Borlongan CV, Acosta SA (2017) Stem Cell-Induced Biobridges as Possible Tools to Aid Neuroreconstruction after CNS Injury. Front Cell Dev Biol 5:51. https://doi.org/10.3389/fcell.2017.00051

    Article  PubMed  PubMed Central  Google Scholar 

  219. Hayakawa K, Chan SJ, Mandeville ET, Park JH, Bruzzese M, Montaner J, Arai K, Rosell A, Lo EH (2018) Protective Effects of Endothelial Progenitor Cell-Derived Extracellular Mitochondria in Brain Endothelium. Stem Cells 36(9):1404–1410. https://doi.org/10.1002/stem.2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lin HY, Liou CW, Chen SD, Hsu TY, Chuang JH, Wang PW, Huang ST, Tiao MM, Chen JB, Lin TK, Chuang YC (2015) Mitochondrial transfer from Wharton’s jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion 22:31–44. https://doi.org/10.1016/j.mito.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  221. Torralba D, Baixauli F, Sánchez-Madrid F (2016) Mitochondria Know No Boundaries: Mechanisms and Functions of Intercellular Mitochondrial Transfer. Front Cell Dev Biol 4:107. https://doi.org/10.3389/fcell.2016.00107

    Article  PubMed  PubMed Central  Google Scholar 

  222. Berridge MV, McConnell MJ, Grasso C, Bajzikova M, Kovarova J, Neuzil J (2016) Horizontal transfer of mitochondria between mammalian cells: beyond co-culture approaches. Curr Opin Genet Dev 38:75–82. https://doi.org/10.1016/j.gde.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  223. Liu K, Ji K, Guo L, Wu W, Lu H, Shan P, Yan C (2014) Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res 92:10–18. https://doi.org/10.1016/j.mvr.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  224. Mahrouf-Yorgov M, Augeul L, Da Silva CC, Jourdan M, Rigolet M, Manin S, Ferrera R, Ovize M, Henry A, Guguin A, Meningaud JP, Dubois-Randé JL, Motterlini R, Foresti R, Rodriguez AM (2017) Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ 24(7):1224–1238. https://doi.org/10.1038/cdd.2017.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Hayakawa K, Bruzzese M, Chou SH, Ning M, Ji X, Lo EH (2018) Extracellular Mitochondria for Therapy and Diagnosis in Acute Central Nervous System Injury. JAMA Neurol 75(1):119–122. https://doi.org/10.1001/jamaneurol.2017.3475

    Article  PubMed  PubMed Central  Google Scholar 

  226. Wang X, Gerdes HH (2015) Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22(7):1181–1191. https://doi.org/10.1038/cdd.2014.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M (2020) Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med 146:45–58. https://doi.org/10.1016/j.freeradbiomed.2019.11.005

    Article  CAS  PubMed  Google Scholar 

  228. Nakamura Y, Lo EH, Hayakawa K (2020) Placental Mitochondria Therapy for Cerebral Ischemia-Reperfusion Injury in Mice. Stroke 51(10):3142–3146. https://doi.org/10.1161/strokeaha.120.030152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Li Y, Sun J, Wu R, Bai J, Hou Y, Zeng Y, Zhang Y, Wang X, Wang Z, Meng X (2020) Mitochondrial MPTP: A Novel Target of Ethnomedicine for Stroke Treatment by Apoptosis Inhibition. Front Pharmacol 11:352. https://doi.org/10.3389/fphar.2020.00352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Zhang F, Lin YA, Kannan S, Kannan RM (2016) Targeting specific cells in the brain with nanomedicines for CNS therapies. J Control Release 240:212–226. https://doi.org/10.1016/j.jconrel.2015.12.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (General Program 81971115, and 82071306), and the Beijing Key Laboratory (BZ0250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yining Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Jin, H., Nan, D. et al. New insights into targeting mitochondria in ischemic injury. Apoptosis 26, 163–183 (2021). https://doi.org/10.1007/s10495-021-01661-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-021-01661-5

Keywords

Navigation