Skip to main content
Log in

Mitochondrial dynamics during cell cycling

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Mitochondria are the cell’s power plant that must be in a proper functional state in order to produce the energy necessary for basic cellular functions, such as proliferation. Mitochondria are ‘dynamic’ in that they are constantly undergoing fission and fusion to remain in a functional state throughout the cell cycle, as well as during other vital processes such as energy supply, cellular respiration and programmed cell death. The mitochondrial fission/fusion machinery is involved in generating young mitochondria, while eliminating old, damaged and non-repairable ones. As a result, the organelles change in shape, size and number throughout the cell cycle. Such precise and accurate balance is maintained by the cytoskeletal transporting system via microtubules, which deliver the mitochondrion from one location to another. During the gap phases G1 and G2, mitochondria form an interconnected network, whereas in mitosis and S-phase fragmentation of the mitochondrial network will take place. However, such balance is lost during neoplastic transformation and autoimmune disorders. Several proteins, such as Drp1, Fis1, Kif-family proteins, Opa1, Bax and mitofusins change in activity and might link the mitochondrial fission/fusion events with processes such as alteration of mitochondrial membrane potential, apoptosis, necrosis, cell cycle arrest, and malignant growth. All this indicates how vital proper functioning of mitochondria is in maintaining cell integrity and preventing carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Westermann B (2008) Molecular machinery of mitochondrial fusion and fission. J Biol Chem 283(20):13501–13505

    Article  CAS  PubMed  Google Scholar 

  2. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lackner LL, Ping H, Graef M, Murley A, Nunnari J (2013) Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc Natl Acad Sci USA 110(6):E458–E467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99

    Article  CAS  PubMed  Google Scholar 

  5. James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278(38):36373–36379

    Article  CAS  PubMed  Google Scholar 

  6. Mattenberger Y, James DI, Martinou JC (2003) Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Lett 538(1–3):53–59

    Article  CAS  PubMed  Google Scholar 

  7. Pon LA, Boldogh IR, Fehrenbacher KL, Yang HC (2005) Mitochondrial movement and inheritance in budding yeast. Gene 354:28–36

    Article  PubMed  Google Scholar 

  8. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112(4):467–480

    Article  CAS  PubMed  Google Scholar 

  9. Dimmer KS, Scorrano L (2006) (De)constructing mitochondria: what for? Physiology (Bethesda) 21:233–241

    Article  CAS  Google Scholar 

  10. Gorsich SW, Shaw JM (2004) Importance of mitochondrial dynamics during meiosis and sporulation. Mol Biol Cell 15(10):4369–4381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morris RL, Hollenbeck PJ (1995) Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131(5):1315–1326

    Article  CAS  PubMed  Google Scholar 

  12. Cerveny KL, Studer SL, Jensen RE, Sesaki H (2007) Yeast mitochondrial division and distribution require the cortical num1 protein. Dev Cell 12(3):363–375

    Article  CAS  PubMed  Google Scholar 

  13. Schauss AC, Bewersdorf J, Jakobs S (2006) Fis1p and Caf4p, but not Mdv1p, determine the polar localization of Dnm1p clusters on the mitochondrial surface. J Cell Sci 119(Pt 15):3098–3106

    Article  CAS  PubMed  Google Scholar 

  14. Green DR, Fitzgerald P (2016) Just so stories about the evolution of apoptosis. Curr Biol 26(13):R620–R627

    Article  CAS  PubMed  Google Scholar 

  15. Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer Cell 166(3):555–566

    Article  CAS  PubMed  Google Scholar 

  16. Smethurst DGJ, Cooper KF (2016) ER fatalities—The role of ER-mitochondrial contact sites in yeast life and death decisions. Mech Ageing Dev. doi:10.1016/j.mad.2016.07.007

  17. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68(4):610–638

    Article  CAS  PubMed  Google Scholar 

  18. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6(3):201–214

    Article  CAS  PubMed  Google Scholar 

  19. Schlisio S, Kenchappa RS, Vredeveld LCW, George RE, Stewart R, Greulich H, Shahriari K, Nguyen NV, Pigny P, Dahia PL, Pomeroy SL, Maris JM, Look AT, Meyerson M, Peeper DS, Carter BD, Kaelin WGK Jr (2008) The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev 22(7):884–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin X, a Sikkink R, Rusnak F, Barber DL (1999) Inhibition of calcineurin phosphatase activity by a calcineurin B homologous protein. J Biol Chem 274(51):36125–36131

    Article  CAS  PubMed  Google Scholar 

  21. Wozniak MJ, Melzer M, Dorner C, Haring H-U, Lammers R (2005) The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein. BMC Cell Biol 6(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alves MM, Burzynski G, Delalande J-M, Osinga J, van der Goot A, Dolga AM, de Graaff E, Brooks AS, Metzger M, Eisel ULM, Shepherd I, Eggen BJL, Hofstra RMW (2010) KBP interacts with SCG10, linking Goldberg-Shprintzen syndrome to microtubule dynamics and neuronal differentiation. Hum Mol Genet 19(18):3642–3651

    Article  CAS  PubMed  Google Scholar 

  23. Ma H, Cai Q, Lu W, Sheng Z-H, Mochida S (2009) KIF5B motor adaptor syntabulin maintains synaptic transmission in sympathetic neurons. J Neurosci 29(41):13019–13029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Z, Cui J, Wong WM, Li X, Xue W, Lin R, Wang J, Wang P, Tanner JA, Cheah KSE, Wu W, Huang J-D (2013) Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions. Development 140(3):617–626

    Article  CAS  PubMed  Google Scholar 

  25. Su Q, Cai Q, Gerwin C, Smith CL, Sheng Z-H (2004) Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat Cell Biol 6(10):941–953

    Article  CAS  PubMed  Google Scholar 

  26. Funakoshi E, Nakagawa K-Y, Hamano A, Hori T, Shimizu A, Asakawa S, Shimizu N, Ito F (2005) Molecular cloning and characterization of gene for Golgi-localized syntaphilin-related protein on human chromosome 8q23. Gene 344:259–271

    Article  CAS  PubMed  Google Scholar 

  27. MacAskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler JT (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61(4):541–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Schwarz TL (2009) The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell 136(1):163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S, Chen Q (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14(2):177–185

    Article  PubMed  Google Scholar 

  30. Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, Zhang X, Xue P, Zhou C, Liu L, Zhu Y, Zhang X, Li L, Zhang L, Sui S, Zhao B, Feng D (2014) ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 15:566–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kiššová I, Deffieu M, Manon S, Camougrand N (2004) Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 279(37):39068–39074

    Article  PubMed  Google Scholar 

  32. Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118(Pt 23):5411–5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Newlon CS, Fangman WL (1975) Mitochondrial DNA synthesis in cell cycle mutants of Saccharomyces cerevisiae. Cell 5(4):423–428

    Article  CAS  PubMed  Google Scholar 

  34. Posakony JW, England JM, Attardi G (1977) Mitochondrial growth and division during the cell cycle in HeLa cells. J Cell Biol 74(2):468–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143(3):777–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke JI, Koffie RM, Frosch MP, Hyman BT, Spires-Jones TL (2011) Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer’s disease brain. Am J Pathol 179(4):2071–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Suen D-F, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manczak M, Reddy PH (2012) Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: Implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet 21(11):2538–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. DuBoff B, GÓ§tz J, Feany MB (2012) Tau promotes neurodegeneration via DRP1 mislocalization in vivo”. Neuron 75(4):618–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Osafune T (1973) Three-dimensional structures of giant mitochondria, dictyosomes and ‘concentric lamellar bodies’ formed during the cell cycle of euglena gracilis (z) in synchronous culture. Microscopy 22(1):51–61

    CAS  Google Scholar 

  41. Yaffe MP (2003) The cutting edge of mitochondrial fusion. Nat Cell Biol 5(6):497–499

    Article  CAS  PubMed  Google Scholar 

  42. Yang HC, Palazzo A, Swayne TC, Pon LA (1999) A retention mechanism for distribution of mitochondria during cell division in budding yeast. Curr Biol 9(19):1111–1114

    Article  CAS  PubMed  Google Scholar 

  43. Rojo M, Legros F, Chateau D, Lombès A (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115(Pt 8):1663–1674

    CAS  PubMed  Google Scholar 

  44. Champion KU, Linder MI (2016) Cellular reorganization during mitotic entry. Trends Cell Biol S0962(16):30097–40006

    Google Scholar 

  45. Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39:503–536

    Article  CAS  PubMed  Google Scholar 

  46. Martínez-Diez M, Santamaría GA, Ortega D, Cuezva JM (2006) Biogenesis and dynamic of mitochondria during the cell cycle: Significance of 3′UTRs. PLoS One 1(1):1–12

    Article  Google Scholar 

  47. Horbay RO, Manko BO, Manko VV, Lootsik MD, Stoika RS (2012) Respiration characteristics of mitochondria in parental and giant transformed cells of the murine Nemeth-Kellner lymphoma. Cell Biol Int 36(1):71–77

    Article  CAS  PubMed  Google Scholar 

  48. Xiong W, Jiao Y, Huang W, Ma M, Yu M, Cui Q, Tan D (2012) Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells. Acta Biochim Biophys Sin (Shanghai) 44(4):347–358

    Article  CAS  Google Scholar 

  49. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 108(25):10190–10195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matoba S, Kang J-G, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312(5780):1650–1653

    Article  CAS  PubMed  Google Scholar 

  51. Mandal S, Guptan P, Owusu-Ansah E, Banerjee U (2005) Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev Cell 9(6):843–854

    Article  CAS  PubMed  Google Scholar 

  52. Mitra K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J (2009) A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci USA 106(29):11960–11965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schieke SM, McCoy JP, Finkel T (2008) Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 7(12):1782–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ekholm SV, Reed SI (2000) Regulation of G1 cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol 12(6):676–684

    Article  CAS  PubMed  Google Scholar 

  55. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282(15):11521–11529

    Article  CAS  PubMed  Google Scholar 

  56. Rambold AS, Kostelecky B, Lippincott-Schwartz J (2011) Together we are stronger: fusion protects mitochondria from autophagosomal degradation. Autophagy 7(12):1–4

    Article  Google Scholar 

  57. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13(5):589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hu X, Zhang Fan, Zhang Liping, Qi Yun (2016) Mitochondrial cAMP signaling. Cell Mol Life Sci. doi:10.1007/s00018-016-2282-2

  59. Finkel T, Hwang PM (2009) The Krebs cycle meets the cell cycle: mitochondria and the G1-S transition. Proc Natl Acad Sci USA 106(29):11825–11826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Habib SJ, Waizenegger T, Lech M, Neupert W, Rapaport D (2005) Assembly of the TOB complex of mitochondria. J Biol Chem 280(8):6434–6440

    Article  CAS  PubMed  Google Scholar 

  61. Ratner N, Bloom GS, Brady ST (1998) A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein. J Neurosci 18(19):7717–7726

    CAS  PubMed  Google Scholar 

  62. R. Kandimalla, Reddy PH (2016) Multiple faces of dynamin-related protein 1 and its role in Alzheimer’s disease pathogenesis. Biochim Biophys Acta 1862(4):814–828

    Article  CAS  PubMed  Google Scholar 

  63. Dorand RD, Nthale J, Myers JT, Barkauskas DS, Avril S, Chirieleison SM, Pareek TK, Abbott DW, Stearns DS, Letterio JJ, Huang AY, Petrosiute A (2016) Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science 353(6297):399–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wong ASL, Lee RHK, Cheung AY, Yeung PK, hung SK, Cheung ZH, Ip NY (2011) Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson’s disease. Nat Cell Biol 13(5):568–579

    Article  CAS  PubMed  Google Scholar 

  65. Quintavalle M, Elia L, Price JH, Heynen-Genel S, Courtneidge SA (2011) A cell-based high-content screening assay reveals activators and inhibitors of cancer cell invasion. Sci Signal 4(183) 49

    Article  Google Scholar 

  66. Miki H, Yamaguchi H, Suetsugu S, Takenawa T (2000) IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408(6813):732–735

    Article  CAS  PubMed  Google Scholar 

  67. Cheng A, Arumugam TV, Liu D, Khatri RG, Mustafa K, Kwak S, Ling H-P, Gonzales C, Xin O, Jo D-G, Guo Z, Mark RJ, Mattson MP (2007) Pancortin-2 interacts with WAVE1 and Bcl-xL in a mitochondria-associated protein complex that mediates ischemic neuronal death. J Neurosci 27(7):1519–1528

    Article  CAS  PubMed  Google Scholar 

  68. Sung JY, Engmann O, Teylan MA, Nairn AC, Greengard P, Kim Y (2008) WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines. Proc Natl Acad Sci USA 105(8):3112–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305(5685):858–862

    Article  CAS  PubMed  Google Scholar 

  70. Tatsuta T (2004) Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell 16(1):248–259

    Article  PubMed  Google Scholar 

  71. Qian W, Choi S, Gibson GA, Watkins SC, Bakkenist CJ, Van Houten B (2012) Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J Cell Sci 125(Pt 23):5745–5757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee S, Park Y-Y, Kim S-H, O. T. K. Nguyen, Yoo Y-S, Chan GK, Sun X, Cho H (2014) Human mitochondrial Fis1 links to cell cycle regulators at G2/M transition. Cell Mol Life Sci 71(4):711–725

    Article  CAS  PubMed  Google Scholar 

  73. Westrate LM, Sayfie AD, Burgenske DM, MacKeigan JP (2014) Persistent mitochondrial hyperfusion promotes G2/M accumulation and caspase-dependent cell death. PLoS One 9(3):e91911

    Article  PubMed  PubMed Central  Google Scholar 

  74. Radford IR, Murphy TK (1994) Radiation response of mouse lymphoid and myeloid cell lines. Part III. Different signals can lead to apoptosis and may influence sensitivity to killing by DNA double-strand breakage. Int J Radiat Biol 65(2):229–239

    Article  CAS  PubMed  Google Scholar 

  75. Erenpreisa J, Ivanov A, Wheatley SP, Kosmacek EA, Ianzini F, Anisimov AP, Mackey M, Davis PJ, Plakhins G, Illidge TM (2008) Endopolyploidy in irradiated p53-deficient tumour cell lines: persistence of cell division activity in giant cells expressing Aurora-B kinase. Cell Biol Int 32(9):1044–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1(4):515–525

    Article  CAS  PubMed  Google Scholar 

  77. Lee YJ, Jeong S-Y, Mariusz K, Smith CL, Youle RJ (2004) Roles of the mammalian mitochondrial fission and fusion mediator Fis1, Drp1, and Opa1 and apoptosis. Mol Biol Cell 15(1):5001–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wasiak S, Zunino R, McBride HM (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177(3):439–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Karbowski M, Lee Y-J, Gaume B, Jeong S-Y, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL, Youle RJ (2002) Spatial and temporal association of bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159(6):931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C (2013) Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol 305(100):H459–H476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. De Vos KJ, Allan VJ, Grierson AJ, Sheetz MP (2005) Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol 15(7):678–683

    Article  PubMed  Google Scholar 

  82. Qi X, Disatnik M-H, Shen N, Sobel RA, Mochly-Rosen D (2011) Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol Biol Cell 22:256–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ishihara N, Otera H, Oka T, Mihara K (2012) Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals. Antioxid Redox Signal 19(4):121001062245003

    Google Scholar 

  84. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8(10):939–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chang C-R, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282(30):21583–21587

    Article  CAS  PubMed  Google Scholar 

  86. Rafelski SM (2013) Mitochondrial network morphology: building an integrative, geometrical view. BMC Biol 11(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  87. Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view. Biochim Biophys Acta 1777(9):1092–1097

    Article  CAS  PubMed  Google Scholar 

  88. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278(10):7743–7746

    Article  CAS  PubMed  Google Scholar 

  89. Twig G, Elorza A, a Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Park Y-Y, Lee S, Karbowski M, Neutzner A, Youle RJ, Cho H (2010) “Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J Cell Sci 123:619–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, Arnauné-Pelloquin L, Davezac N, Mils V, Miquel MC, Rojo M, Belenguer P (2016) Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 90:3–19

    Article  CAS  PubMed  Google Scholar 

  92. Collins TJ, Berridge MJ, Lipp P, Bootman MD (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21(7):1616–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20(8):1863–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17(4):491–506

    Article  CAS  PubMed  Google Scholar 

  95. Twig G, Liu X, Liesa M, Wikstrom JD, a Molina AJ, Las G, Yaniv G, Hajnóczky G, Shirihai OS (2010) Biophysical properties of mitochondrial fusion events in pancreatic beta-cells and cardiac cells unravel potential control mechanisms of its selectivity. Am J Physiol Cell Physiol 299:C477–C487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hess DC, Myers CL, Huttenhower C, Hibbs MA, Hayes AP, Paw J, Clore JJ, Mendoza RM, Luis BS, Nislow C, Giaever G, Costanzo M, Troyanskaya OG, Caudy AA (2009) Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis. PLoS Genet 5(3):e1000407

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bauer MF, Gempel K, Reichert AS, Rappold GA, Lichtner P, Gerbitz KD, Neupert W, Brunner M, Hofmann S (1999) Genetic and structural characterization of the human mitochondrial inner membrane translocase. J Mol Biol 289(1):69–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof., Dr. Darrell Mousseau from the Mousseau Lab at the University of Saskatchewan and Dr. Wilma Groening and Dr. Blaine Chartrand from Saskatchewan Polytechnic Instititute for helpful comments and analysis of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rostyslav Horbay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horbay, R., Bilyy, R. Mitochondrial dynamics during cell cycling. Apoptosis 21, 1327–1335 (2016). https://doi.org/10.1007/s10495-016-1295-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1295-5

Keywords

Navigation