Skip to main content
Log in

Protein Misfolding, Aggregation, and Autophagy After Brain Ischemia

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Ischemic brain injury is a common disorder linked to a variety of diseases. Significant progress has been made in our understanding of the underlying mechanisms. Previous studies show that protein misfolding, aggregation, and multiple organelle damage are major pathological events in postischemic neurons. The autophagy pathway is the chief route for bulk degradation of protein aggregates and damaged organelles. The latest studies suggest that impairment of autophagy contributes to abnormal protein aggregation and organelle damages after brain ischemia. This article reviews recent studies of protein misfolding, aggregation, and impairment of autophagy after brain ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AP:

Autophagosome

AL:

Autolysosome

2VO:

Two-vessel occlusion with hypotension ischemia model

HSC70:

Heat-shock cognate protein 70

HSP40:

Heat-shock protein 40

ATG:

Autophagic gene-related protein

LC3:

Microtubule-associated protein light chain 3

DG:

Dentate gyrus

ER:

Endoplasmic reticulum

References

  1. Alberti S, Esser C, Hohfeld J. BAG-1—a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones. 2003;8:225–31.

    Article  PubMed  Google Scholar 

  2. Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME. Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci. 1998;21:516–20.

    Article  PubMed  CAS  Google Scholar 

  3. Asanuma K, Tanida I, Shirato I, et al. MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J. 2003;17:1165–7.

    PubMed  CAS  Google Scholar 

  4. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 2002;416:507–11.

    Article  PubMed  CAS  Google Scholar 

  5. Bukau B, Hesterkamp T, Luirink J. Growing up in a dangerous environment: a network of multiple targeting and folding pathways for nascent polypeptides in the cytosol. Trends Cell Biol. 1996;6:480–6.

    Article  PubMed  CAS  Google Scholar 

  6. Butler D, Brown QB, Chin DJ, Batey L, Karim S, Mutneja MS, et al. Cellular responses to protein accumulation involve autophagy and lysosomal enzyme activation. Rejuvenation Res. 2005;8:227–37.

    Article  PubMed  CAS  Google Scholar 

  7. Butler D, Nixon RA, Bahr BA. Potential compensatory responses through autophagic/lysosomal pathways in neurodegenerative diseases. Autophagy. 2006;2(3):234–7.

    Google Scholar 

  8. Colbourne F, Sutherland GR, Auer RN. Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J Neurosci. 1999;19:4200–10.

    PubMed  CAS  Google Scholar 

  9. Cooper HK, Zalewska T, Kawakami S, Hossmann KA, Kleihues P. Delayed inhibition of protein synthesis during recirculation after compression ischemia of the rat brain. Acta Neurol Scand Suppl. 1977;64:130–1.

    PubMed  CAS  Google Scholar 

  10. DeGracia DJ, Hu BR. Irreversible translation arrest in the reperfused brain. J Cereb Blood Flow Metab. 2007;27:875–93.

    PubMed  CAS  Google Scholar 

  11. Deshpande J, Bergstedt K, Linden T, Kalimo H, Wieloch T. Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death. Exp Brain Res. 1992;88:91–105.

    Article  PubMed  CAS  Google Scholar 

  12. Eskelinen EL. Maturation of autophagic vacuoles in mammalian cells. Autophagy. 2005;1:1–10.

    Article  PubMed  CAS  Google Scholar 

  13. Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem. 2001;70:603–47.

    Article  PubMed  CAS  Google Scholar 

  14. Ge P, Luo Y, Liu CL, Hu B. Protein aggregation and proteasome dysfunction after brain ischemia. Stroke. 2007;38:3230–6.

    Article  PubMed  CAS  Google Scholar 

  15. Giffard RG, Xu L, Zhao H, Carrico W, Ouyang Y, Qiao Y, et al. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J Exp Biol. 2004;207:3213–20.

    Article  PubMed  CAS  Google Scholar 

  16. Gustafsson AB, Gottlieb RA. Recycle or die: the role of autophagy in cardioprotection. J Mol Cell Cardiol. 2008;44:654–61.

    Article  PubMed  CAS  Google Scholar 

  17. Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem. 2006;281:29776–87.

    Article  PubMed  CAS  Google Scholar 

  18. Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.

    Article  PubMed  CAS  Google Scholar 

  19. Hardesty B, Tsalkova T, Kramer G. Co-translational folding. Curr Opin Struct Biol. 1999;9:111–4.

    Article  PubMed  CAS  Google Scholar 

  20. Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002;295:1852–8.

    Article  PubMed  CAS  Google Scholar 

  21. He C, Klionsky DJ. Autophagy and neurodegeneration. ACS Chem Biol. 2006;1:211–3.

    Article  PubMed  CAS  Google Scholar 

  22. Hossmann K-A. Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res. 1993;96:167–77.

    Google Scholar 

  23. Hu BR (2007) Co-translational protein folding and aggregation after brain ischemia. In: Lajtha A, Pak Chan (eds) Handbook of neurochemistry and molecular neurobiology, 3rd edition; Vol. 23: acute ischemic injury and repair in the nervous system. Springer, Berlin. pp. 109–120.

  24. Hu BR, Wieloch T. Stress-induced inhibition of protein synthesis initiation: modulation of initiation factor 2 and guanine nucleotide exchange factor activity following transient cerebral ischemia in the rat. J Neurosci. 1993;13:1830–8.

    PubMed  CAS  Google Scholar 

  25. Hu BR, Janelidze S, Ginsberg MD, Busto R, Perez-Pinzon M, Sick TJ, et al. Protein aggregation after focal brain ischemia and reperfusion. J Cereb Blood Flow Metab. 2001;21:865–75.

    Article  PubMed  CAS  Google Scholar 

  26. Hu BR, Kamme F, Wieloch T. Alterations of Ca2+/calmodulin-dependent protein kinase II and its messenger RNA in the rat hippocampus following normo- and hypothermic ischemia. Neuroscience. 1995;68(4):1003–16.

    Article  PubMed  CAS  Google Scholar 

  27. Hu BR, Liu CL, Ouyang Y, Blomgren K, Siesjö BK. Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J Cereb Blood Flow Metab. 2000;2:1294–300.

    Article  Google Scholar 

  28. Hu BR, Martone ME, Liu CL (2004) Protein aggregation, unfolded protein response and delayed neuronal death after brain ischemia. In: Buchan VA, Ito U (eds). Maturation phenomenon in cerebral ischemia. pp 225–237.

  29. Hu BR, Martone ME, Jones YZ, Liu CL. Protein aggregation after transient cerebral ischemia. J Neurosci. 2000;20(9):3191–9.

    PubMed  CAS  Google Scholar 

  30. Hu BR, Park M, Martone ME, Fischer WH, Ellisman MH, Zivin JA. Assembly of proteins to postsynaptic densities after transient cerebral ischemia. J Neurosci. 1998;18(2):625–33.

    Google Scholar 

  31. Ito U, Spatz M, Walker Jr JT, Klatzo I. Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol (Berl). 1975;32:209–23.

    Article  CAS  Google Scholar 

  32. Ivy GO, Kanai S, Ohta M, Smith G, Sato Y, Kobayashi M, et al. Lipofuscin-like substances accumulate rapidly in brain, retina and internal organs with cysteine protease inhibition. Adv Exp Med Biol. 1989;266:31–45.

    PubMed  CAS  Google Scholar 

  33. Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 1982;239:57–69.

    Article  PubMed  CAS  Google Scholar 

  34. Kirino T, Tamura A, Sano K. Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol (Berl). 1984;64:139–47.

    Article  CAS  Google Scholar 

  35. Kiselyov K, Jennigs JJ Jr, Rbaibi Y, Chu CT (2007) Autophagy, mitochondria and cell death in lysosomal storage diseases. Autophagy 3.

  36. Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 2008;4:151–75.

    PubMed  CAS  Google Scholar 

  37. Klionsky DJ et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–544.

    Article  PubMed  CAS  Google Scholar 

  38. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol. 2008;172:454–69.

    Article  PubMed  CAS  Google Scholar 

  39. Komatsu M, Waguri S, Chiba T, Murata S, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.

    Article  PubMed  CAS  Google Scholar 

  40. Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest. 2005;115(10):2679–88.

    Google Scholar 

  41. Li GC, Mivechi NF, Weitzel G. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int J Hyperth. 1995;11:459–88.

    Article  CAS  Google Scholar 

  42. Liu C, Gao Y, Barrett J, Hu B. Autophagy and protein aggregation after brain ischemia. J Neurochem. 2010;115:68–78.

    Article  PubMed  CAS  Google Scholar 

  43. Liu CL, Hu BR. Protein ubiquitination in postsynaptic densities following transient cerebral ischemia. J Cereb Blood Flow Metab. 2004;24:1219–25.

    Article  PubMed  Google Scholar 

  44. Liu CL, Hu BR. Alterations of N-ethylmaleimide-sensitive ATPase following transient cerebral ischemia. Neuroscience. 2004;128:767–74.

    Article  PubMed  CAS  Google Scholar 

  45. Liu CL, Siesjo BK, Hu BR. Pathogenesis of hippocampal neuronal death after hypoxia–ischemia changes during brain development. Neuroscience. 2004;129:113–23.

    Article  Google Scholar 

  46. Liu CL, Chen S, Kamme F, Hu BR. Ischemic preconditioning prevents protein aggregation after transient cerebral ischemia. Neuroscience. 2005;134:69–80.

    Article  PubMed  CAS  Google Scholar 

  47. Liu CL, Ge P, Zhang F, Hu BR. Co-translational protein aggregation after transient cerebral ischemia. Neuroscience. 2005;134:1273–84.

    Article  PubMed  CAS  Google Scholar 

  48. Martone ME, Jones YZ, Young SJ, Ellisman MH, Zivin JA, Hu BR. Modification of postsynaptic densities after transient cerebral ischemia: a quantitative and three-dimensional ultrastructural study. Neurosci. 1999;19:1988–97.

    CAS  Google Scholar 

  49. Matsui Y, Kyoi S, Takagi H, Hsu CP, Hariharan N, et al. Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy. 2008;4:409–15.

    PubMed  CAS  Google Scholar 

  50. Menzies FM, Ravikumar B, Rubinsztein DC. Protective roles for induction of autophagy in multiple proteinopathies. Autophagy. 2006;2:224–5.

    PubMed  CAS  Google Scholar 

  51. Mies G, Ishimaru S, Xie Y, Seo K, Hossmann KA. Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab. 1991;11:753–61.

    Article  PubMed  CAS  Google Scholar 

  52. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75.

    Article  PubMed  CAS  Google Scholar 

  53. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–26.

    Article  PubMed  CAS  Google Scholar 

  54. Nedergaard M. Neuronal injury in the infarct border: a neuropathological study in the rat. Acta Neuropathol (Berl). 1987;73:267–74.

    Article  CAS  Google Scholar 

  55. Nishino I. Autophagic vacuolar myopathy. Semin Pediatr Neurol. 2006;13:90–5.

    Article  PubMed  Google Scholar 

  56. Pandey UB, Nie Z, Batlevi Y, McCray BA, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007;447:859–63.

    Article  PubMed  CAS  Google Scholar 

  57. Papadakis M, Hadley G, Xilouri M, Hoyte LC, Nagel S, McMenamin MM, et al. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy. Nat Med. 2013;19:351–7.

    Article  PubMed  CAS  Google Scholar 

  58. Petito CK, Lapinski RL. Postischemic alterations in ultrastructural cytochemistry of neuronal Golgi apparatus. Lab Investig. 1986;55:696–702.

    PubMed  CAS  Google Scholar 

  59. Puyal J, Ginet V, Clarke PG. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol. 2013;105:24–48.

    Article  PubMed  Google Scholar 

  60. Rafols JA, Daya AM, O’Neil BJ, Krause GC, Neumar RW, White BC. Global brain ischemia and reperfusion: Golgi apparatus ultrastructure in neurons selectively vulnerable to death. Acta Neuropathol (Berl). 1995;90:17–30.

    Article  CAS  Google Scholar 

  61. Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2008;443:780–6.

    Article  Google Scholar 

  62. Siesjö BK, Siesjö P. Mechanisms of secondary brain injury. Eur J Anaesthesiol. 1996;13:247–68.

    Article  PubMed  Google Scholar 

  63. Takagi H, Matsui Y, Sadoshima J. The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxid Redox Signal. 2008;9:1373–81.

    Article  Google Scholar 

  64. Tomimoto H, Yanagihara T. Electron microscopic investigation of the cerebral cortex after cerebral ischemia and reperfusion in the gerbil. Brain Res. 1992;598:87–97.

    Article  PubMed  CAS  Google Scholar 

  65. Truettner JS, Hu K, Liu CL, Dietrich WD, Hu B. Subcellular stress response and induction of molecular chaperones and folding proteins after transient global ischemia in rats. Brain Res. 2009;1249:9–1218.

    Article  PubMed  CAS  Google Scholar 

  66. Wang Y, Han R, Liang ZQ, et al. An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-d-aspartate receptor agonist kainic acid. Autophagy. 2008;4:214–26.

    PubMed  CAS  Google Scholar 

  67. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem. 2010;285:10850–61.

    Article  PubMed  CAS  Google Scholar 

  68. Xia DY, Li W, Qian HR, Yao S, Liu JG, Qi XK. Ischemia preconditioning is neuroprotective in a rat cerebral ischemic injury model through autophagy activation and apoptosis inhibition. Braz J Med Biol Res. 2013;46:580–8.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang F, Liu CL, Hu BR. Irreversible aggregation of protein synthesis machinery after focal brain ischemia. J Neurochem. 2006;98:102–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest. All institutional and national guidelines for the care and use of laboratory animals were followed (see respective papers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingren Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, T., Park, Y., Sun, X. et al. Protein Misfolding, Aggregation, and Autophagy After Brain Ischemia. Transl. Stroke Res. 4, 581–588 (2013). https://doi.org/10.1007/s12975-013-0299-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0299-5

Keywords

Navigation