Skip to main content
Log in

Methods to detect apoptotic cell death

  • The many ways of apoptotic cell death
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In concert with the increased understanding that there are many ways for cells to die, several methods have been developed to detect cell death. The classification of cell death posed some difficulties that were overcome by implementing strict selection criteria that should also apply to the detection methods. The selection of assays is based on morphological criteria and distinguishable marks of apoptotic patways. The detection of apoptosis includes methods related to membrane alterations, DNA fragmentation, cytotoxicity and cell proliferation, mitochondrial damage, immunological detection and mechanism based assays. Other less frequently used detections of apoptosis are: (a) light-scattering flow cytometry to avoid underestimating the extent and timing of apoptosis, (b) time-lapse microscopy perfusion platform to support the temporal aspects of detection, to measure cell surface area and cellular adhesion, and (c) genotoxicity specific chromatin changes. Attention is called to the advantages and limitations of various methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

With permission [5], (Fig. 1a)

Fig. 3
Fig. 4

With permission of Banfalvi [41], (Figs. 1.2, 1.3, 1.4; pp 6, 8 and 9)

Fig. 5

With permission [55], (Fig. 2D)

Fig. 6

With permisssion [57], (Figs. 3, 6, 8)

Fig. 7

With permission [62], (Fig. 4)

Similar content being viewed by others

References

  1. Sgonc R, Gruber J (1998) Apoptosis detection: an overview. Exp Gerontol 33:525–533

    Article  CAS  PubMed  Google Scholar 

  2. Sgonc R, Wick G (1994) Methods for the detection of apoptosis. Int Arch Allergy Immunol 105:327–332

    Article  CAS  PubMed  Google Scholar 

  3. Martin D, Lenardo M (2001) Morphological, biochemical, and flow cytometric assays of apoptosis. Curr Protoc Mol Biol. doi:10.1002/0471142727.mb1413s49

  4. Muppidi J, Porter M, Siegel RM (2004) Measurement of apoptosis and other forms of cell death. Curr Protoc Immunol. doi:10.1002/0471142735.im0317s59

  5. Ujvarosi K, Hunyadi J, Nagy G, Pocsi I, Banfalvi G (2007) Preapoptotic chromatin changes induced by ultraviolet B irradiation in human erythroleukemia K562 cells. Apoptosis 12:2089–2099

    Article  PubMed  Google Scholar 

  6. Banfalvi G (2016) Applications of permeabilizations. In: Banfalvi G (ed) Permeability of biological membranes. Springer, New York, pp 201–254

    Chapter  Google Scholar 

  7. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, Orenstein J, Moss B, Lenardo MJ (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278:51613–51621

    Article  CAS  PubMed  Google Scholar 

  9. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    Article  CAS  PubMed  Google Scholar 

  11. Banfalvi G (2009) Apoptotic chromatin changes. Springer Science + Business Media B. V., New York, p 220

    Google Scholar 

  12. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assasy. J Immunol Meth 65:55–63

    Article  CAS  Google Scholar 

  13. Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 3:3B

    Google Scholar 

  14. Akagi J, Kordon M, Zhao H, Matuszek A, Dobrucki J, Errington R, Smith PJ, Takeda K, Darzynkiewicz Z, Wlodkowic D (2013) Real-time cell viability assays using a new anthracycline derivative DRAQ7. Cytometry A 83A:227–234

    Article  CAS  Google Scholar 

  15. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  CAS  PubMed  Google Scholar 

  16. Duke RC, Chervenak R, Cohen JJ (1983) Endogenous endonuclease-induced DNA fragmentation: an early event in cell mediated cytolysis. Proc Natl Acad Sci USA 80:6361–6365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ioannou YA, Chen FW (1996) Quantitation of DNA fragmentation in apoptosis. Nucl Acids Res 24:992–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gold R, Schmied M, Rothe G, Zischler H, Breitschoff H, Wekerle H, Lassmann H (1993) Detection of DNA fragmentation in apoptosis: Application of in situ nick translation to cell culture systems and tissue sections. J Histochem Cytochem 41:1023–1030

    Article  CAS  PubMed  Google Scholar 

  19. Ansari B, Coates PJ, Greenstein BD, Hall PA (1993) In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. J Pathol 170:1–8

    Article  CAS  PubMed  Google Scholar 

  20. Wheeldon EB, Williams SM, Soames AR, James NH, Roberts RA (1995) Quantitation of apoptotic bodies in rat liver by In Situ End Labelling (ISEL): correlation with morphology. Toxicol Pathol 23:410–415

    Article  CAS  PubMed  Google Scholar 

  21. Maniatis T, Fritsch EF, and Sambrook J (1992) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  22. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death insitu via specific labelling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  23. Wijsman JH, Jonker RR, Keijzer R, van de Velde CJ, Cornelisse CJ, van Dierendonck JH (1993) A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J Histochem Cytochem 41:7–12

    Article  CAS  PubMed  Google Scholar 

  24. Didenko VV (2011) In situ labeling of DNA breaks and apoptosis by T7 DNA polymerase. Methods Mol Biol 682:37–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oberhammer FA, Bursch W, Tiefenbacher R, Froschl G, Pavelka M, Purchio T, Schulte-Hermann R (1993) Apoptosis is induced by transforming growth factor-β1 within 5 h in regressing liver without significant DNA fragmentation. Hepatology 18:1238–1246

    Article  CAS  PubMed  Google Scholar 

  26. Rigby PW, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Article  CAS  PubMed  Google Scholar 

  27. Mathew CG (1985) Radiolabeling of DNA by nick translation. Methods Mol Biol 2:257–261

    CAS  PubMed  Google Scholar 

  28. Assad M, Lemieux N, Rivard CH (1997) Immunogold electron microscopy in situ end-labeling (EM-ISEL): assay for biomaterial DNA damage detection. Biomed Mater Eng 7:391–400

    CAS  PubMed  Google Scholar 

  29. Pisetsky DS (2012) The origin and properties of extracellular DNA: from PAMP to DAMP. Clin Immunol 144:32–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao Y, Wang P, Tajima A, Matsumura M (1997) Physical and biological studies on DNA/anti-DNA immune complex formed in vitro. CytoTechnology 25:165–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bernas T, Dobrucki J (2002) Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47:236–242

    Article  CAS  PubMed  Google Scholar 

  32. Altman FP (1976) Tetrazolium salts and formazans. Prog Histochem Cytochem 9:1–56

    Article  CAS  PubMed  Google Scholar 

  33. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Ann Rev 11:127–152

    Article  CAS  Google Scholar 

  34. Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens J, Seniff D, Boyd MR (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833

    CAS  PubMed  Google Scholar 

  35. Marshall NJ, Goodwin CJ, Holt SJ (1999) A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul 5:69–84

    Google Scholar 

  36. el-Deiry WS (1988) Regulation of p53 downstream genes. Semin Cencer Biol 8:345–357

    Article  Google Scholar 

  37. Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B (1999) Identification and classification of p53-regulated genes. Proc Natl Acad Sci USA 96:14517–14522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sax JK, El-Deiry WS (2003) p53 downstream targets and chemosensitivity. Cell Death Differ 10:413–417

    Article  CAS  PubMed  Google Scholar 

  39. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fujikawa M, Yoshida M (2010) A sensitive, simple assay of mitochondrial ATP synthesis of cultured mammalian cells suitable for high-throughput analysis. Biochem Biophys Res Commun 401:538–543

    Article  CAS  PubMed  Google Scholar 

  41. Banfalvi G (2011) Owerview of cell cycle synchronization. In: Banfalvi G (ed) Cell cycle synchronization. Springer, New York, pp6, 8, 9

    Chapter  Google Scholar 

  42. Chandra D, Tang DG (2009) Detection of apoptosis in cell-free systems. Methods Mol Biol 559:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leers MP, Kölgen W, Bjorklund V, Bergman T, Tribbick G, Persson B, Persson B, Björklund P, Ramaekers FC, Björklund B, Nap M, Jörnvall H, Schutte B (1999) Immunocytochemical detection and mapping of a cytokeratin 18 neoepitope exposed during early apoptosis. J Pathol 187:567–572

    Article  CAS  PubMed  Google Scholar 

  44. Grassi A, Susca M, Ferri S, Gabusi E, D’Errico A, Farina G, Maccariello S, Zauli D, Bianchi FB, Ballardini G (2004) Detection of the M30 Neoepitope as a new tool to quantify liver apoptosis: timing and patterns of positivity on frozen and paraffin embedded sections. Am J Clin Pathol 121:211–219

    Article  CAS  PubMed  Google Scholar 

  45. Cevatemre B, Ulukaya E, Sarimahmut M, Oral AY, Frame FM (2015) The M30 assay does not detect apoptosis in epithelial-derived cancer cells expressing low levels of cytokeratin 18. Tumour Biol 36:6857–6865

    Article  CAS  PubMed  Google Scholar 

  46. Östling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    Article  PubMed  Google Scholar 

  47. Srám RJ, Podrazilová K, Dejmek J, Mracková G, Pilcík T (1998) Single cell gel electrophoresis assay: sensitivity of peripheral white blood cells in human population studies. Mutagenesis 13:99–103

    Article  PubMed  Google Scholar 

  48. Hoffmann H, Högel J, Speit G (2005) The effect of smoking on DNA effects in the comet assay: a meta-analysis. Mutagenesis 20:455–466

    Article  CAS  PubMed  Google Scholar 

  49. Rössler U, Hornhardt S, Seidl C, Müller-Laue E, Walsh L, Panzer W, Schmid E, Senekowitsch-Schmidtke R, Gomolka M (2006) The sensitivity of the alkaline comet assay in detecting DNA lesions induced by X-rays, gamma rays and alpha particles. Radiat Prot Dosimetry 122:154–159

    Article  PubMed  Google Scholar 

  50. Møller P, Knudsen LE, Loft S, Wallin H (2000) The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev 9:1005–1015

    PubMed  Google Scholar 

  51. Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040

    Article  CAS  PubMed  Google Scholar 

  52. Camplejohn RS, Rutherford J (2001) p53 functional assays: detecting p53 mutations in both the germline and in sporadic tumours. Cell Prolif 34:1–14

    Article  CAS  PubMed  Google Scholar 

  53. Dang RK, Anthony RS, Craig JI, Leonard RC, Parker AC (2002) Limitations of the use of single base changes in the p53 gene to detect minimal residual disease of breast cancer. Mol Pathol 55:177–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Banfalvi G, Ujvarosi K, Trencsenyi G, Somogyi C, Nagy G, Basnakian AG (2007) Cell culture density dependent toxicity and chromatin changes upon cadmium treatment in murine pre-B cells. Apoptosis 12:1219–1228

    Article  CAS  PubMed  Google Scholar 

  55. Banfalvi G, Klaisz M, Ujvarosi K, Trencsenyi G, Rozsa D, Nagy G (2007) Gamma irradiation induced apoptotic changes in the chromatin structure of human erythroleukemia K562 cells. Apoptosis 12:2271–2283

    Article  CAS  PubMed  Google Scholar 

  56. Rose GG (1963) Cinemicrography in cell biology. Academic Press, New York

    Google Scholar 

  57. Nagy G, Pinter G, Kohut G, Adam A, Trencsenyi G, Hornok L, Banfalvi G (2010) Time-lapse analysis of cell death in mammalian and fungal cells. DNA Cell Biol 29:249–259

    Article  CAS  PubMed  Google Scholar 

  58. Nagy G, Tanczos B, Fidrus E, Talas L, Banfalvi G (2016) Chemically induced cell cycle arrest in perfusion cell culture. In: Banfalvi G (ed) Cell cycle synchronization, 2nd edn. Springer-Nature, Switzerland (in press)

    Google Scholar 

  59. Bernard J, Malawista SE (1995) Remembrance of professor Marcel Bessis (1917–1994). Blood Cell Mol Dis 21:152–155

    Article  CAS  Google Scholar 

  60. Humke EW (2000) Web alert. Apoptosis Chem Biol 7:R48–R49

    Article  CAS  PubMed  Google Scholar 

  61. Desjardins LM, MacManus JP (1995) An adherent cell model to study different stages of apoptosis. Exp Cell Res 216:380–387

    Article  CAS  PubMed  Google Scholar 

  62. Nagy G, Hennig GW, Petrenyi K, Kovacs L, Pocsi I, Dombradi V, Banfalvi G (2014) Time-lapse video microscopy and image analysis of adherence and growth patterns of Candida albicans strains. Appl Microbiol Biotechnol 98:5185–5194

    Article  CAS  PubMed  Google Scholar 

  63. Wang X, Wang Y, Zhou Y, Wei X (2014) Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus. Mycologia 106:881–3878

    Article  CAS  PubMed  Google Scholar 

  64. Joo JH, Liao G, Collins JB, Grissom SF, Jetten AM (2007) Farnesol-induced apoptosis in human lung carcinoma cells is coupled to the endoplasmic reticulum stress response. Cancer Res 67:7929–7936

    Article  CAS  PubMed  Google Scholar 

  65. Scheper MA, Shirtliff ME, Meiller TF, Peters BM, Jabra-Rizk MA (2008) Farnesol, a fungal quorum sensing molecule triggers apoptosis in human oral squamous carcinoma. Neoplasia 10:954–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Joo JH, Jetten AM (2009) Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett 287(2):123

    Article  PubMed  PubMed Central  Google Scholar 

  67. Salucci S, Burattini S, Battistelli M, Buontempo F, Canonico B, Martelli AM, Papa S, Falcieri E (2015) Tyrosol prevents apoptosis in irradiated keratinocytes. J Dermatol Sci 80:61–68

    Article  CAS  PubMed  Google Scholar 

  68. Paulson JR, Laemmli UK (1977) The structure of histone depleted chromosomes. Cell 12:817–828

    Article  CAS  PubMed  Google Scholar 

  69. Adolph KW (1980) Isolation and structural organization of human mitotic chromosomes. Chromosoma 76:23–33

    Article  CAS  PubMed  Google Scholar 

  70. Rattner JB, Lin CC (1985) Radial loops and helical coils coexist in metaphase chromosomes. Cell 42:291–296

    Article  CAS  PubMed  Google Scholar 

  71. Boy De La Tour E, Laemmli UK (1988) The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell 55:937–944

    Article  Google Scholar 

  72. Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS (2004) Visualization of early chromosomal condensation: a hierarchical folding, axial glue model of chromosome structure. J Cell Biol 166:775–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Banfalvi G (1993) Fluorescent analysis of replication and intermediates of chromatin folding in nuclei of mammalian cells. In: Bach PH, Reynolds CH, Clark JM, Mottley J, Poole PL (eds) Biotechnology applications of microinjection, microscopic imaging, and fluorescence. Plenum Press, New York, pp 111–119

    Chapter  Google Scholar 

  74. Banfalvi G (2014) Apoptotic agents inducing genotoxicity-specific chromatin changes. Apoptosis 19:1301–1316

    Article  CAS  PubMed  Google Scholar 

  75. Kucera R, Paulus H (1982) Studies on ribonucleoside-diphosphate reductase in permeable animal cells. II. Catalytic and regulatory properties of the enzyme in mouse L cells. Arch Biochem Biophys 214:114–123

    Article  CAS  PubMed  Google Scholar 

  76. Gacsi M, Nagy G, Pinter G, Basnakian AG, Banfalvi G (2005) Condensation of interphase chromatin in nuclei of Chinese hamster ovary (CHO-K1) cells. DNA Cell Biol 24:43–53

    Article  CAS  PubMed  Google Scholar 

  77. Banfalvi G, Nagy G, Gacsi M, Roszer T, Basnakian AG (2006) Common pathway of chromosome condensation in mammalian cells. DNA Cell Biol 25:295–301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the OTKA Grant T042762 to GB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaspar Banfalvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banfalvi, G. Methods to detect apoptotic cell death. Apoptosis 22, 306–323 (2017). https://doi.org/10.1007/s10495-016-1333-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1333-3

Keywords

Navigation