Skip to main content

Advertisement

Log in

The M30 assay does not detect apoptosis in epithelial-derived cancer cells expressing low levels of cytokeratin 18

  • Research Article
  • Published:
Tumor Biology

Abstract

The primary aim of this study was to compare measurement of apoptosis by M30 immunoreactivity (a biomarker for apoptosis) to other apoptosis assays (morphological assessment of nuclei, Annexin-V-FITC staining, DNA fragmentation and PARP cleavage) in vitro. Caspase-cleaved cytokeratin 18 (M30, ccK18) is only produced in epithelial cells and is regarded as a pharmacodynamic biomarker of apoptotic cell death because it is released from cells during apoptosis induced by chemotherapeutic agents. However, we have observed false negative results using this assay in clinical samples. Therefore, we tested its ability to accurately detect apoptosis in a panel of lung cancer cell lines with a range of clinically approved chemotherapeutic drugs. Three different non-small cell lung cancer (NSCLC) cell lines (A549, H1299, PC3) were used to correlate M30 levels with alternate apoptosis assays. Following successful induction of apoptosis, the A549 cell line showed an increase in M30 levels along with other well-known features of apoptosis, whilst H1299 and PC3 cell lines did not show an increase in M30 levels, even when apoptosis was detected by other means. Further analysis showed that H1299 and PC3 cell lines expressed much lower levels of cytokeratin 18 protein compared to the A549 cell line. Our results suggest that reliable detection of apoptosis via the M30 assay only works when sufficient levels of cytokeratin 18 are present in the cells. This means that the M30 assay may result in false negative results for apoptosis, and as such, the ELISA should be used in conjunction with other assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ccK18:

Caspase-cleaved cytokeratin 18

K18:

Cytokeratin 18

M65:

Full-length cytokeratin 18

M30:

Caspase-cleaved cytokeratin 18

ATP:

Adenosine-5′-triphosphate

PARP:

Poly (ADP-ribose) polymerase

PI:

Propidium iodide

PBS:

Phosphate-buffered saline

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

ELISA:

Enzyme-linked immunosorbent assay

HRP:

Horseradish peroxidase

RPMI:

Roswell Park Memorial Institute medium, MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

FITC:

Fluorescein isothiocyanate

References

  1. Chou CF, Riopel CL, Rott LS, Omary MB. A significant soluble keratin fraction in ‘simple’ epithelial cells. Lack of an apparent phosphorylation and glycosylation role in keratin solubility. J Cell Sci. 1993;105:433–44.

    CAS  PubMed  Google Scholar 

  2. Fuchs E, Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345–82.

    Article  CAS  PubMed  Google Scholar 

  3. Kramer G, Erdal H, Mertens HJ, Nap M, Mauermann J, Steiner G, et al. Differentiation between cell death modes using measurements of different soluble forms of extracellular cytokeratin 18. Cancer Res. 2004;64:1751–6.

    Article  CAS  PubMed  Google Scholar 

  4. Cummings J, Ward TH, Greystoke A, Ranson M, Dive C. Biomarker method validation in anticancer drug development. Br J Pharmacol. 2008;153:646–56.

    Article  CAS  PubMed  Google Scholar 

  5. Leers MP, Kölgen W, Björklund V, Bergman T, Tribbick G, Persson B, et al. Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J Pathol. 1999;187:567–72.

    Article  CAS  PubMed  Google Scholar 

  6. Hägg M, Bivén K, Ueno T, Rydlander L, Björklund P, Wiman KG, et al. A novel high-through-put assay for screening of pro-apoptotic drugs. Investig New Drugs. 2002;20:253–9.

    Article  Google Scholar 

  7. Schutte B, Henfling M, Kolgen W, Bouman M, Meex S, Leers MP, et al. Keratin 8/18 breakdown and reorganization during apoptosis. Exp Cell Res. 2004;297:11–26.

    Article  CAS  PubMed  Google Scholar 

  8. Steele NL, Plumb JA, Vidal L, Tjørnelund J, Knoblauch P, Rasmussen A, et al. A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin Cancer Res. 2008;14:804–10.

    Article  CAS  PubMed  Google Scholar 

  9. Scott LC, Evans TR, Cassidy J, Harden S, Paul J, Ullah R, et al. Cytokeratin 18 in plasma of patients with gastrointestinal adenocarcinoma as a biomarker of tumour response. Br J Cancer. 2009;101:410–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hou JM, Greystoke A, Lancashire L, Cummings J, Ward T, Board R, et al. Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy. Am J Pathol. 2009;175:808–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olofsson MH, Ueno T, Pan Y, Xu R, Cai F, van der Kuip H, et al. Cytokeratin-18 is a useful serum biomarker for early determination of response of breast carcinomas to chemotherapy. Clin Cancer Res. 2007;13:3198–206.

    Article  CAS  PubMed  Google Scholar 

  12. Kramer G, Schwarz S, Hagg M, Havelka AM, Linder S. Docetaxel induces apoptosis in hormone refractory prostate carcinomas during multiple treatment cycles. Br J Cancer. 2006;94:1592–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozturk B, Coskun U, Sancak B, Yaman E, Buyukberber S, Benekli M. Elevated serum levels of M30 and M65 in patients with locally advanced head and neck tumors. Int Immunopharmacol. 2009;9:645–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ausch C, Buxhofer-Ausch V, Olszewski U, Hinterberger W, Ogris E, Schiessel R, et al. Caspase-cleaved cytokeratin 18 fragment (M30) as marker of postoperative residual tumor load in colon cancer patients. Eur J Surg Oncol. 2009;35:1164–8.

    Article  CAS  PubMed  Google Scholar 

  15. Koelink PJ, Lamers CB, Hommes DW, Verspaget HW. Circulating cell death products predict clinical outcome of colorectal cancer patients. BMC Cancer. 2009;9:88.

    Article  PubMed  PubMed Central  Google Scholar 

  16. de Haas EC, di Pietro A, Simpson KL, Meijer C, Suurmeijer AJ, Lancashire LJ, et al. Clinical evaluation of M30 and M65 ELISA cell death assays as circulating biomarkers in a drug-sensitive tumor, testicular cancer. Neoplasia. 2008;10:1041–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bühler H, Schaller G. Transfection of keratin 18 gene in human breast cancer cells causes induction of adhesion proteins and dramatic regression of malignancy in vitro and in vivo. Mol Cancer Res. 2005;3:365–71.

    Article  PubMed  Google Scholar 

  18. Schaller G, Fuchs I, Pritze W, Ebert A, Herbst H, Pantel K, et al. Elevated keratin 18 protein expression indicates a favorable prognosis in patients with breast cancer. Clin Cancer Res. 1996;2:1879–85.

    CAS  PubMed  Google Scholar 

  19. Ulukaya E, Yilmaztepe A, Akgoz S, Linder S, Karadag M. The levels of caspase-cleaved cytokeratin 18 are elevated in serum from patients with lung cancer and helpful to predict the survival. Lung Cancer. 2007;56:399–404.

    Article  PubMed  Google Scholar 

  20. Cevatemre B, Ari F, Sarimahmut M, Oral AY, Dere E, Kacar O, et al. Combination of fenretinide and indole-3-carbinol results in synergistic cytotoxic activity inducing apoptosis against human breast cancer cells in vitro. Anticancer Drugs. 2013;24:577–86.

    CAS  PubMed  Google Scholar 

  21. Andreotti PE, Cree IA, Kurbacher CM, Hartmann DM, Linder D, Harel G. Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: clinical correlation for cisplatin resistance of ovarian carcinoma. Cancer Res. 1995;55:5276–82.

    CAS  PubMed  Google Scholar 

  22. Ulukaya E, Sarimahmut M, Cevatemre B, Ari F, Yerlikaya A, Dimas K. Additive enhancement of apoptosis by TRAIL and fenretinide in metastatic breast cancer cells in vitro. Biomed Pharmacother. 2014;68:477–82.

    Article  CAS  PubMed  Google Scholar 

  23. Ulukaya E, Frame FM, Cevatemre B, Pellacani D, Walker H, Mann VM, et al. Differential cytotoxic activity of a novel palladium-based compound on prostate cell lines, primary prostate epithelial cells and prostate stem cells. PLoS ONE. 2013;8(5):e64278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ueno T, Toi M, Linder S. Detection of epithelial cell death in the body by cytokeratin 18 measurement. Biomed Pharmacother. 2005;59 Suppl 2:S359–362.

    Article  CAS  PubMed  Google Scholar 

  25. Demiray M, Ulukaya EE, Arslan M, Gokgoz S, Saraydaroglu O, Ercan I, et al. Response to neoadjuvant chemotherapy in breast cancer could be predictable by measuring a novel serum apoptosis product, caspase-cleaved cytokeratin 18: a prospective pilot study. Cancer Investig. 2006;24:669–76.

    Article  CAS  Google Scholar 

  26. Bilici A, Ustaalioglu BB, Ercan S, Seker M, Yilmaz BE, Orcun A, et al. The prognostic significance of the increase in the serum M30 and M65 values after chemotherapy and relationship between these values and clinicopathological factors in patients with advanced gastric cancer. Tumour Biol. 2012;33:2201–8.

    Article  CAS  PubMed  Google Scholar 

  27. Yaman E, Coskun U, Sancak B, Buyukberber S, Ozturk B, Benekli M. Serum M30 levels are associated with survival in advanced gastric carcinoma patients. Int Immunopharmacol. 2010;10:719–22.

    Article  CAS  PubMed  Google Scholar 

  28. Dive C, Smith RA, Garner E, Ward T, George-Smith SS, Campbell F, et al. Considerations for the use of plasma cytokeratin 18 as a biomarker in pancreatic cancer. Br J Cancer. 2010;102:577–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oven Ustaalioglu B, Bilici A, Ercan S, Orcun A, Seker M, Ozkan A, et al. Serum M30 and M65 values in patients with advanced stage non-small-cell lung cancer compared with controls. Clin Transl Oncol. 2012;14:356–61.

    Article  CAS  PubMed  Google Scholar 

  30. Oyama K, Fushida S, Kinoshita J, Okamoto K, Makino I, Nakamura K, et al. Serum cytokeratin 18 as a biomarker for gastric cancer. Clin Exp Med. 2013;13:289–95.

    Article  CAS  PubMed  Google Scholar 

  31. van der Velden LA, Schaafsma HE, Manni JJ, Ruiter DJ, Ramaekers FC, Kuijpers W. Cytokeratin and vimentin expression in normal epithelium and squamous cell carcinomas of the larynx. Eur Arch Otorhinolaryngol. 1997;254:376–83.

    Article  PubMed  Google Scholar 

  32. Proby CM, Churchill L, Purkis PE, Glover MT, Sexton CJ, Leigh IM. Keratin 17 expression as a marker for epithelial transformation in viral warts. Am J Pathol. 1993;143:1667–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hendrix MJ, Seftor EA, Chu YW, Seftor RE, Nagle RB, McDaniel KM, et al. Coexpression of vimentin and keratins by human melanoma tumor cells: correlation with invasive and metastatic potential. J Natl Cancer Inst. 1992;84:165–74.

    Article  CAS  PubMed  Google Scholar 

  34. Iyer SV, Dange PP, Alam H, Sawant SS, Ingle AD, Borges AM, et al. Understanding the role of keratins 8 and 18 in neoplastic potential of breast cancer derived cell lines. PLoS ONE. 2013;8(1):e53532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Caulin C, Salvesen GS, Oshima RG. Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol. 1997;138:1379–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. MacFarlane M, Merrison W, Dinsdale D, Cohen GM. Active caspases and cleaved cytokeratins are sequestered into cytoplasmic inclusions in TRAIL-induced apoptosis. J Cell Biol. 2000;148:1239–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature. 1998;391:96–9.

    Article  CAS  PubMed  Google Scholar 

  38. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43–50.

    Article  CAS  PubMed  Google Scholar 

  39. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 1997;89:175–84.

    Article  CAS  PubMed  Google Scholar 

  40. Linder S, Olofsson MH, Herrmann R, Ulukaya E. Utilization of cytokeratin-based biomarkers for pharmacodynamic studies. Expert Rev Mol Diagn. 2010;10:353–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by BAP under grant no. KUAP(T)-2014/1. We appreciate the kind gift of the PC3 cell line from Assoc. Prof. Dr. Hakan Akca, Medical School of Pamukkale University, Turkey. F.M. Frame was funded by Yorkshire Cancer Research. Authors would like to thank Adam M. Hirst for critical evaluation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Ulukaya.

Additional information

Buse Cevatemre and Engin Ulukaya contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cevatemre, B., Ulukaya, E., Sarimahmut, M. et al. The M30 assay does not detect apoptosis in epithelial-derived cancer cells expressing low levels of cytokeratin 18. Tumor Biol. 36, 6857–6865 (2015). https://doi.org/10.1007/s13277-015-3367-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3367-5

Keywords

Navigation