Skip to main content
Log in

Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

NRK-52E cells:

Normal rat kidney tubular epithelial cells

HK-2 cells:

Human kidney proximal tubular cell line

HG:

High glucose

MTT:

3-[4,5-dimethylthiazol-2-y]-2,5-diphenyltetrazolium bromide

DMEM:

Dulbecco’s modified Eagle medium

DMSO:

Dimethyl sulfoxide

BSA:

Bovine serum albumin

RIPA:

Radioimmune precipitation assay

TGF:

Transforming growth factor

PBS:

Phosphate-buffered saline

DCF-DA:

2,7-Dichlorofluorescein-diacetate

TBS:

Tris-buffered saline

ROS:

Reactive oxygen species

Nrf2:

NF-E2-related factor 2

ARE:

Antioxidant response elements

HO-1:

Heme oxygenase-1

STZ:

Streptozotocin streptozotocin

SOD:

Superoxide dismutase

GSH:

Glutathione

LDH:

Lactic dehydrogenase

References

  1. Sugimoto H, Grahovac G, Zeisberg M, Kalluri R (2007) Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes 56:1825–1833

    Article  CAS  PubMed  Google Scholar 

  2. Taniguchi K, Xia L, Goldberg HJ et al (2013) Inhibition of Src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes 62:3874–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Habib SL (2013) Diabetes and renal tubular cell apoptosis. World J Diabetes 4:27–30

    Article  PubMed  PubMed Central  Google Scholar 

  4. Allen DA, Harwood S, Varagunam M, Raftery MJ, Yaqoob MM (2003) High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB J 17:908–910

    CAS  PubMed  Google Scholar 

  5. Verzola D, Bertolotto MB, Villaggio B et al (2002) Taurine prevents apoptosis induced by high ambient glucose in human tubule renal cells. J Investig Med 50:443–451

    CAS  PubMed  Google Scholar 

  6. Sanchez-Nino MD, Sanz AB, Lorz C et al (2010) BASP1 promotes apoptosis in diabetic nephropathy. J Am Soc Nephrol 21:610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mei W, Peng Z, Lu M et al (2015) Peroxiredoxin 1 inhibits the oxidative stress induced apoptosis in renal tubulointerstitial fibrosis. Nephrol (Carlton) 20:832–842

    Article  CAS  Google Scholar 

  8. Verzola D, Bertolotto MB, Villaggio B et al (2004) Oxidative stress mediates apoptotic changes induced by hyperglycemia in human tubular kidney cells. J Am Soc Nephrol 15(Suppl 1):S85–87

    Article  CAS  PubMed  Google Scholar 

  9. Jeong BC, Kwak C, Cho KS et al (2005) Apoptosis induced by oxalate in human renal tubular epithelial HK-2 cells. Urol Res 33:87–92

    Article  CAS  PubMed  Google Scholar 

  10. Nicholson DW, Ali A, Thornberry NA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  CAS  PubMed  Google Scholar 

  11. Velagapudi C, Bhandari BS, Abboud-Werner S, Simone S, Abboud HE, Habib SL (2011) The tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes. J Am Soc Nephrol 22:262–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rhyu DY, Yang Y, Ha H et al (2005) Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol 16:667–675

    Article  CAS  PubMed  Google Scholar 

  13. Xia N, Yan RY, Liu Q et al (2015) Augmenter of liver regeneration plays a protective role against hydrogen peroxide-induced oxidative stress in renal proximal tubule cells. Apoptosis 20:423–432

    Article  CAS  PubMed  Google Scholar 

  14. Naziroglu M (2012) Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res 32:134–141

    Article  CAS  PubMed  Google Scholar 

  15. Naziroglu M, Dikici DM, Dursun S (2012) Role of oxidative stress and Ca(2)(+) signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res 37:2065–2075

    Article  CAS  PubMed  Google Scholar 

  16. Shang G, Tang X, Gao P et al (2015) Sulforaphane attenuation of experimental diabetic nephropathy involves GSK-3 beta/Fyn/Nrf2 signaling pathway. J Nutr Biochem 26:596–606

    Article  CAS  PubMed  Google Scholar 

  17. Lee JM, Johnson JA (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 37:139–143

    Article  CAS  PubMed  Google Scholar 

  18. Rizvi F, Mathur A, Kakkar P (2015) Morin mitigates acetaminophen-induced liver injury by potentiating Nrf2 regulated survival mechanism through molecular intervention in PHLPP2-Akt-Gsk3beta axis. Apoptosis 20:1296–1306

    Article  CAS  PubMed  Google Scholar 

  19. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789

    Article  CAS  PubMed  Google Scholar 

  20. Jiang T, Huang Z, Lin Y, Zhang Z, Fang D, Zhang DD (2010) The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes 59:850–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson JA, Johnson DA, Kraft AD et al (2008) The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 1147:61–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim J, Cha YN, Surh YJ (2010) A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res 690:12–23

    Article  CAS  PubMed  Google Scholar 

  23. Kang SJ, Ryoo IG, Lee YJ, Kwak MK (2012) Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity. Toxicol Appl Pharmacol 258:89–98

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Zhang Z, Sun W et al (2014) Sulforaphane attenuation of type 2 diabetes-induced aortic damage was associated with the upregulation of Nrf2 expression and function. Oxid Med Cell Longev 2014:123963. doi:10.1155/2014/123963

    PubMed  PubMed Central  Google Scholar 

  25. Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60:79–127

    Article  CAS  PubMed  Google Scholar 

  26. Zhang H, Wei J, Xue R et al (2010) Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism 59:285–292

    Article  PubMed  Google Scholar 

  27. Hu Y, Ehli EA, Kittelsrud J et al (2012) Lipid-lowering effect of berberine in human subjects and rats. Phytomedicine 19:861–867

    Article  CAS  PubMed  Google Scholar 

  28. Wu D, Wen W, Qi CL et al (2012) Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin. Phytomedicine 19:712–718

    Article  CAS  PubMed  Google Scholar 

  29. Liu W, Zhang X, Liu P et al (2010) Effects of berberine on matrix accumulation and NF-kappa B signal pathway in alloxan-induced diabetic mice with renal injury. Eur J Pharmacol 638:150–155

    Article  CAS  PubMed  Google Scholar 

  30. Wang FL, Tang LQ, Yang F, Zhu LN, Cai M, Wei W (2013) Renoprotective effects of berberine and its possible molecular mechanisms in combination of high-fat diet and low-dose streptozotocin-induced diabetic rats. Mol Biol Rep 40:2405–2418

    Article  CAS  PubMed  Google Scholar 

  31. Yu W, Sheng M, Xu R et al (2013) Berberine protects human renal proximal tubular cells from hypoxia/reoxygenation injury via inhibiting endoplasmic reticulum and mitochondrial stress pathways. J Transl Med 11:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Huang Y, Lam KS et al (2009) Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc Res 82:484–492

    Article  CAS  PubMed  Google Scholar 

  33. Hsu YY, Tseng YT, Lo YC (2013) Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicol Appl Pharmacol 272(3):787–796

    Article  CAS  PubMed  Google Scholar 

  34. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  CAS  PubMed  Google Scholar 

  35. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  CAS  PubMed  Google Scholar 

  36. Nishiura T, Abe K (2007) Alpha1-adrenergic receptor stimulation induces the expression of receptor activator of nuclear factor kappaB ligand gene via protein kinase C and extracellular signal-regulated kinase pathways in MC3T3-E1 osteoblast-like cells. Arch Oral Biol 52:778–785

    Article  CAS  PubMed  Google Scholar 

  37. Ahsan A, Han G, Pan J et al (2015) Phosphocreatine protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Apoptosis 20:1563–1576

    Article  CAS  PubMed  Google Scholar 

  38. Lorz C, Benito-Martin A, Justo P et al (2006) Modulation of renal tubular cell survival: where is the evidence? Curr Med Chem 13:449–454

    Article  CAS  PubMed  Google Scholar 

  39. Guo B, Yang M, Liang D, Yang L, Cao J, Zhang L (2012) Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway. Mol Cell Biochem 361:209–216

    Article  CAS  PubMed  Google Scholar 

  40. Baek D, Nam J, Koo YD et al (2004) Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and -independent processes. Plant Mol Biol 56:15–27

    Article  CAS  PubMed  Google Scholar 

  41. Bondor CI, Potra AR, Moldovan D et al (2015) Relationship of adiponectin to markers of oxidative stress in type 2 diabetic patients: influence of incipient diabetes-associated kidney disease. Int Urol Nephrol 47:1173–1180

    Article  CAS  PubMed  Google Scholar 

  42. Tomasello F, Messina A, Lartigue L et al (2009) Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis. Cell Res 19:1363–1376

    Article  CAS  PubMed  Google Scholar 

  43. Lau GJ, Godin N, Maachi H et al (2012) Bcl-2-modifying factor induces renal proximal tubular cell apoptosis in diabetic mice. Diabetes 61:474–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Naziroglu M, Yoldas N, Uzgur EN, Kayan M (2013) Role of contrast media on oxidative stress, Ca(2+) signaling and apoptosis in kidney. J Membr Biol 246:91–100

    Article  CAS  PubMed  Google Scholar 

  45. Hsu YY, Chen CS, Wu SN, Jong YJ, Lo YC (2012) Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells. Eur J Pharm Sci 46:415–425

    Article  CAS  PubMed  Google Scholar 

  46. Aminzadeh MA, Nicholas SB, Norris KC, Vaziri ND (2013) Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo-interstitial nephropathy. Nephrol Dial Transpl 28:2038–2045

    Article  CAS  Google Scholar 

  47. Shih AY, Li P, Murphy TH (2005) A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 25:10321–10335

    Article  CAS  PubMed  Google Scholar 

  48. Cho HY, Reddy SP, Yamamoto M, Kleeberger SR (2004) The transcription factor NRF2 protects against pulmonary fibrosis. FASEB J 18:1258–1260

    CAS  PubMed  Google Scholar 

  49. Leonard MO, Kieran NE, Howell K et al (2006) Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J 20:2624–2626

    Article  CAS  PubMed  Google Scholar 

  50. Chen K, Li G, Geng F et al (2014) Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats. Apoptosis 19:946–957

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (81170561, 81170775), and Postdoctoral Science Foundation of China (2014MM551144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liang, D., Lian, X. et al. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism. Apoptosis 21, 721–736 (2016). https://doi.org/10.1007/s10495-016-1234-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1234-5

Keywords

Navigation